Cargando…
LPI-EnEDT: an ensemble framework with extra tree and decision tree classifiers for imbalanced lncRNA-protein interaction data classification
BACKGROUND: Long noncoding RNAs (lncRNAs) have dense linkages with various biological processes. Identifying interacting lncRNA-protein pairs contributes to understand the functions and mechanisms of lncRNAs. Wet experiments are costly and time-consuming. Most computational methods failed to observe...
Autores principales: | Peng, Lihong, Yuan, Ruya, Shen, Ling, Gao, Pengfei, Zhou, Liqian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8642957/ https://www.ncbi.nlm.nih.gov/pubmed/34861891 http://dx.doi.org/10.1186/s13040-021-00277-4 |
Ejemplares similares
-
LPI-deepGBDT: a multiple-layer deep framework based on gradient boosting decision trees for lncRNA–protein interaction identification
por: Zhou, Liqian, et al.
Publicado: (2021) -
Ensemble of Rotation Trees for Imbalanced Medical Datasets
por: Guo, Huaping, et al.
Publicado: (2018) -
LPI-HyADBS: a hybrid framework for lncRNA-protein interaction prediction integrating feature selection and classification
por: Zhou, Liqian, et al.
Publicado: (2021) -
SFPEL-LPI: Sequence-based feature projection ensemble learning for predicting LncRNA-protein interactions
por: Zhang, Wen, et al.
Publicado: (2018) -
Employing One-Class SVM Classifier Ensemble for Imbalanced Data Stream Classification
por: Klikowski, Jakub, et al.
Publicado: (2020)