Cargando…
A deep learning toolbox for automatic segmentation of subcortical limbic structures from MRI images
A tool was developed to automatically segment several subcortical limbic structures (nucleus accumbens, basal forebrain, septal nuclei, hypothalamus without mammillary bodies, the mammillary bodies, and fornix) using only a T1-weighted MRI as input. This tool fills an unmet need as there are few, if...
Autores principales: | Greve, Douglas N., Billot, Benjamin, Cordero, Devani, Hoopes, Andrew, Hoffmann, Malte, Dalca, Adrian V., Fischl, Bruce, Iglesias, Juan Eugenio, Augustinack, Jean C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643077/ https://www.ncbi.nlm.nih.gov/pubmed/34571161 http://dx.doi.org/10.1016/j.neuroimage.2021.118610 |
Ejemplares similares
-
SynthMorph: Learning Contrast-Invariant Registration Without Acquired Images
por: Hoffmann, Malte, et al.
Publicado: (2022) -
SynthSeg: Segmentation of brain MRI scans of any contrast and resolution without retraining
por: Billot, Benjamin, et al.
Publicado: (2023) -
Learning the Effect of Registration Hyperparameters with HyperMorph
por: Hoopes, Andrew, et al.
Publicado: (2022) -
Automated segmentation of the hypothalamus and associated subunits in brain MRI()
por: Billot, Benjamin, et al.
Publicado: (2020) -
SynthStrip: skull-stripping for any brain image
por: Hoopes, Andrew, et al.
Publicado: (2022)