Cargando…
A flexible special case of the CSN for spatial modeling and prediction
We introduce a parsimonious, flexible subclass of the closed-skew normal (CSN) distribution that produces valid stationary spatial models. We derive and prove some relevant properties for this subfamily; in particular, we show that it is identifiable, closed under marginalization and conditioning an...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8643107/ https://www.ncbi.nlm.nih.gov/pubmed/34900560 http://dx.doi.org/10.1016/j.spasta.2021.100556 |
Sumario: | We introduce a parsimonious, flexible subclass of the closed-skew normal (CSN) distribution that produces valid stationary spatial models. We derive and prove some relevant properties for this subfamily; in particular, we show that it is identifiable, closed under marginalization and conditioning and that a null correlation implies independence. Based on the subclass, we propose a discrete spatial model and its continuous version. We discuss why these random fields constitute valid models, and additionally, we discuss least-squares estimators for the models under the subclass. We propose to perform predictions on the model using the profile predictive likelihood; we discuss how to construct prediction regions and intervals. To compare the model against its Gaussian counterpart and show that the numerical likelihood estimators are well-behaved, we present a simulation study. Finally, we use the model to study a heuristic COVID-19 mortality risk index; we evaluate the model’s performance through 10-fold cross-validation. The risk index model is compared with a baseline Gaussian model. |
---|