Cargando…
63. PK-RNN-V: A Deep Learning Model for Vancomycin Therapeutic Drug Monitoring using Electronic Health Record Data
BACKGROUND: Therapeutic drug monitoring (TDM) for vancomycin (VAN) with Bayesian models is recommended by national guidelines. However, limited data incorporating the models may hurt the performance. Our aim is to develop a novel deep learning-based pharmacokinetic model for vancomycin (PK-RNN-V) us...
Autores principales: | Masayuki, Nigo, Tran, Hong Thoai Nga, Xie, Ziqian, Feng, Han, Bekhet, Laila, Hongyu, Miao, Zhi, Degui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644021/ http://dx.doi.org/10.1093/ofid/ofab466.063 |
Ejemplares similares
-
Recurrent neural network models (CovRNN) for predicting outcomes of patients with COVID-19 on admission to hospital: model development and validation using electronic health record data
por: Rasmy, Laila, et al.
Publicado: (2022) -
428. Deep-Learning Based Predictive Model for Patients with Positive MRSA Cultures Using Time-Series Electronic Health Records
por: Nigo, Masayuki, et al.
Publicado: (2022) -
MetaRNN: differentiating rare pathogenic and rare benign missense SNVs and InDels using deep learning
por: Li, Chang, et al.
Publicado: (2022) -
Med-BERT: pretrained contextualized embeddings on large-scale structured electronic health records for disease prediction
por: Rasmy, Laila, et al.
Publicado: (2021) -
Deep learning for named entity recognition on Chinese electronic medical records: Combining deep transfer learning with multitask bi-directional LSTM RNN
por: Dong, Xishuang, et al.
Publicado: (2019)