Cargando…

176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens

BACKGROUND: Influenza infection may affect bacterial transmission dynamics and seasonality of antimicrobial resistance (AMR). There is a paucity of data on the association of influenza season and AMR rates. We aimed to describe trends of AMR and their correlation with the influenza season in ambulat...

Descripción completa

Detalles Bibliográficos
Autores principales: Amiche, Amine, Kabler, Heidi, Weeks, Janet, Yu, Kalvin, Gupta, Vikas
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644034/
http://dx.doi.org/10.1093/ofid/ofab466.176
_version_ 1784609992592064512
author Amiche, Amine
Kabler, Heidi
Weeks, Janet
Yu, Kalvin
Gupta, Vikas
author_facet Amiche, Amine
Kabler, Heidi
Weeks, Janet
Yu, Kalvin
Gupta, Vikas
author_sort Amiche, Amine
collection PubMed
description BACKGROUND: Influenza infection may affect bacterial transmission dynamics and seasonality of antimicrobial resistance (AMR). There is a paucity of data on the association of influenza season and AMR rates. We aimed to describe trends of AMR and their correlation with the influenza season in ambulatory and inpatient settings in the United States (US). METHODS: We used the BD Insights Research Database (Franklin Lakes, NJ USA) to identify 30 day non-duplicate isolates collected from patients >17 years old with susceptibility profile of Gram-negative (GN) (Enterobacterales (ENT), P. aeruginosa (PSA), A. baumannii spp. (ACB), and S. maltophilia (Sm)) and Gram-positive (GP) pathogens (S. aureus (SA), and S. pneumoniae (Sp)) in up to 257 US healthcare institutions from 2011-19. We defined the outcomes as rates per 100 admissions and % of non-susceptibility (NS), stratified by community and inpatient settings, resistance type (resistance to carbapenem (Carb-NS), quinolone (FQ-NS), macrolide (Macr NS), penicillin (PCN NS), and extended spectrum cephalosporin (ESC NS)) and isolate origin (respiratory and non-respiratory). Influenza data were presented as the % of positive laboratory tests. We used descriptive statistics and generalized estimating equations models to evaluate the monthly trends of AMR outcomes and correlation with the influenza season. RESULTS: We identified 16 576 274 confirmed non-duplicate pathogens, of which 154 841 were GN Carb-NS, 1 502 796 GN FQ-NS, 498 012 methicillin resistant SA (MRSA), and 44 131 Macr-NS, PCN-NS, and ESC-NS Sp. Among the Carb-NS pathogens, Influenza rate was correlated with % ACB-NS [β= 0.205, p< .001]. In the FQ-NS group, influenza was associated with overall % ENT-NS [β= 0.041 p< .001] and % PSA-NS [β= 0.039, p = .015]. For the GP pathogens, all Sp. rates were correlated with increased influenza positivity % (See Table). Only MRSA rates of respiratory source were associated with influenza [β= .066, p=.028]. Summary of Multivariate regressions of AMR and % Flu by Source and Setting (controlling for hospital level factors): 2011-2019 [Image: see text] Data in each cell is presented as the coefficient and p-value is in parentheses. ^adjusted for region, teaching, urban, bed size, and season. + p<.10 *p <.05 **p <.01 ***p <.001 CONCLUSION: Our study revealed surprising association between influenza epidemics and GN resistance and corroborated the evidence of correlation between respiratory GP and influenza infections. These insights may help inform targeted antimicrobial stewardship initiatives during influenza season. DISCLOSURES: Amine Amiche, PhD, Sanofi (Employee, Shareholder) Heidi Kabler, MD, Sanofi Pasteur (Employee) Janet Weeks, PhD, Becton, Dickinson and Company (Employee) Kalvin Yu, MD, BD (Employee) Vikas Gupta, PharmD, BCPS, Becton, Dickinson and Company (Employee, Shareholder)
format Online
Article
Text
id pubmed-8644034
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-86440342021-12-06 176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens Amiche, Amine Kabler, Heidi Weeks, Janet Yu, Kalvin Gupta, Vikas Open Forum Infect Dis Oral Abstracts BACKGROUND: Influenza infection may affect bacterial transmission dynamics and seasonality of antimicrobial resistance (AMR). There is a paucity of data on the association of influenza season and AMR rates. We aimed to describe trends of AMR and their correlation with the influenza season in ambulatory and inpatient settings in the United States (US). METHODS: We used the BD Insights Research Database (Franklin Lakes, NJ USA) to identify 30 day non-duplicate isolates collected from patients >17 years old with susceptibility profile of Gram-negative (GN) (Enterobacterales (ENT), P. aeruginosa (PSA), A. baumannii spp. (ACB), and S. maltophilia (Sm)) and Gram-positive (GP) pathogens (S. aureus (SA), and S. pneumoniae (Sp)) in up to 257 US healthcare institutions from 2011-19. We defined the outcomes as rates per 100 admissions and % of non-susceptibility (NS), stratified by community and inpatient settings, resistance type (resistance to carbapenem (Carb-NS), quinolone (FQ-NS), macrolide (Macr NS), penicillin (PCN NS), and extended spectrum cephalosporin (ESC NS)) and isolate origin (respiratory and non-respiratory). Influenza data were presented as the % of positive laboratory tests. We used descriptive statistics and generalized estimating equations models to evaluate the monthly trends of AMR outcomes and correlation with the influenza season. RESULTS: We identified 16 576 274 confirmed non-duplicate pathogens, of which 154 841 were GN Carb-NS, 1 502 796 GN FQ-NS, 498 012 methicillin resistant SA (MRSA), and 44 131 Macr-NS, PCN-NS, and ESC-NS Sp. Among the Carb-NS pathogens, Influenza rate was correlated with % ACB-NS [β= 0.205, p< .001]. In the FQ-NS group, influenza was associated with overall % ENT-NS [β= 0.041 p< .001] and % PSA-NS [β= 0.039, p = .015]. For the GP pathogens, all Sp. rates were correlated with increased influenza positivity % (See Table). Only MRSA rates of respiratory source were associated with influenza [β= .066, p=.028]. Summary of Multivariate regressions of AMR and % Flu by Source and Setting (controlling for hospital level factors): 2011-2019 [Image: see text] Data in each cell is presented as the coefficient and p-value is in parentheses. ^adjusted for region, teaching, urban, bed size, and season. + p<.10 *p <.05 **p <.01 ***p <.001 CONCLUSION: Our study revealed surprising association between influenza epidemics and GN resistance and corroborated the evidence of correlation between respiratory GP and influenza infections. These insights may help inform targeted antimicrobial stewardship initiatives during influenza season. DISCLOSURES: Amine Amiche, PhD, Sanofi (Employee, Shareholder) Heidi Kabler, MD, Sanofi Pasteur (Employee) Janet Weeks, PhD, Becton, Dickinson and Company (Employee) Kalvin Yu, MD, BD (Employee) Vikas Gupta, PharmD, BCPS, Becton, Dickinson and Company (Employee, Shareholder) Oxford University Press 2021-12-04 /pmc/articles/PMC8644034/ http://dx.doi.org/10.1093/ofid/ofab466.176 Text en © The Author(s) 2021. Published by Oxford University Press on behalf of Infectious Diseases Society of America. https://creativecommons.org/licenses/by/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Oral Abstracts
Amiche, Amine
Kabler, Heidi
Weeks, Janet
Yu, Kalvin
Gupta, Vikas
176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens
title 176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens
title_full 176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens
title_fullStr 176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens
title_full_unstemmed 176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens
title_short 176. Antibiotic Resistance Patterns, Seasonality, and Correlation with the Influenza Season in the United States: A Multicenter Evaluation Reveals Surprising Association Between Influenza Season and Gram Negative Pathogens
title_sort 176. antibiotic resistance patterns, seasonality, and correlation with the influenza season in the united states: a multicenter evaluation reveals surprising association between influenza season and gram negative pathogens
topic Oral Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644034/
http://dx.doi.org/10.1093/ofid/ofab466.176
work_keys_str_mv AT amicheamine 176antibioticresistancepatternsseasonalityandcorrelationwiththeinfluenzaseasonintheunitedstatesamulticenterevaluationrevealssurprisingassociationbetweeninfluenzaseasonandgramnegativepathogens
AT kablerheidi 176antibioticresistancepatternsseasonalityandcorrelationwiththeinfluenzaseasonintheunitedstatesamulticenterevaluationrevealssurprisingassociationbetweeninfluenzaseasonandgramnegativepathogens
AT weeksjanet 176antibioticresistancepatternsseasonalityandcorrelationwiththeinfluenzaseasonintheunitedstatesamulticenterevaluationrevealssurprisingassociationbetweeninfluenzaseasonandgramnegativepathogens
AT yukalvin 176antibioticresistancepatternsseasonalityandcorrelationwiththeinfluenzaseasonintheunitedstatesamulticenterevaluationrevealssurprisingassociationbetweeninfluenzaseasonandgramnegativepathogens
AT guptavikas 176antibioticresistancepatternsseasonalityandcorrelationwiththeinfluenzaseasonintheunitedstatesamulticenterevaluationrevealssurprisingassociationbetweeninfluenzaseasonandgramnegativepathogens