Cargando…
662. Using Machine Learning to Aid in the Diagnosis of Multisystem Inflammatory Syndrome in Children
BACKGROUND: Multisystem inflammatory syndrome in children (MIS-C) is a newly recognized inflammatory syndrome that occurs post Severe Acute Respiratory Syndrome-Coronavirus-2 (SARS-CoV-2) infection. It affects multiple organ systems - particularly cardiac, gastrointestinal, dermatologic and neurolog...
Autores principales: | Soneji, Maulin, Tan, John, Wong, Emily |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644093/ http://dx.doi.org/10.1093/ofid/ofab466.859 |
Ejemplares similares
-
CARDIAC MANIFESTATIONS OF MULTISYSTEM INFLAMMATORY SYNDROME IN CHILDREN AT A TERTIARY REFERRAL CHILDREN'S HOSPITAL
por: Randolph, Zachary, et al.
Publicado: (2022) -
662. Identification of Clinically Relevant Microbes with the MasSpec Pen
por: Povilaitis, Sydney C, et al.
Publicado: (2020) -
480. Alternate Diagnoses in Children Evaluated for Multisystem Inflammatory Syndrome in Children (MIS-C)
por: Kaneta, Kelli, et al.
Publicado: (2021) -
488. Comparison of Demographics and Clinical Characteristics of Multisystem Inflammatory Syndrome in Children and Kawasaki Disease
por: Talj, Rana, et al.
Publicado: (2021) -
401. Short Term Outcomes in Multisystem Inflammatory Syndrome in Children (MIS-C) Related to COVID-19
por: Riollano, Mariawy, et al.
Publicado: (2020)