Cargando…
17. Comparative Assessment of a Machine Learning Model and Rectal Swab Surveillance to Predict Hospital Onset Clostridioides difficile
BACKGROUND: Hospital onset Clostridioides difficile infection (HO-CDI) is associated with significant morbidity and mortality. Screening individuals at risk could help limit transmission, however swab-based surveillance for HO-CDI is resource intensive. Applied to electronic health records (EHR) dat...
Autores principales: | Ötleş, Erkin, Oh, Jeeheh, Patel, Alieysa, Keidan, Micah, Young, Vincent B, Rao, Krishna, Wiens, Jenna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8644772/ http://dx.doi.org/10.1093/ofid/ofab466.017 |
Ejemplares similares
-
Clostridioides difficile infection surveillance in intensive care units and oncology wards using machine learning
por: Ötleş, Erkin, et al.
Publicado: (2023) -
Using Machine Learning and the Electronic Health Record to Predict Complicated Clostridium difficile Infection
por: Li, Benjamin Y, et al.
Publicado: (2019) -
Longitudinal genomic surveillance of carriage and transmission of Clostridioides difficile in an intensive care unit
por: Miles-Jay, Arianna, et al.
Publicado: (2023) -
691. Association between Clostridioides difficile Colonization, Rectal Swab NAAT Positivity, and Environmental Contamination
por: Lee, Mary Morgan, et al.
Publicado: (2023) -
18. Global Surveillance of Clostridioides difficile Demonstrates High Prevalence in Non-Healthcare Settings
por: Jo, Jinhee, et al.
Publicado: (2021)