Cargando…
Fully automatic deep convolutional approaches for the analysis of COVID-19 using chest X-ray images
Covid-19 is a new infectious disease caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Given the seriousness of the situation, the World Health Organization declared a global pandemic as the Covid-19 rapidly around the world. Among its applications, chest X-ray images are frequ...
Autores principales: | de Moura, Joaquim, Novo, Jorge, Ortega, Marcos |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier B.V.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645263/ https://www.ncbi.nlm.nih.gov/pubmed/34899109 http://dx.doi.org/10.1016/j.asoc.2021.108190 |
Ejemplares similares
-
Does imbalance in chest X-ray datasets produce biased deep learning approaches for COVID-19 screening?
por: Álvarez-Rodríguez, Lorena, et al.
Publicado: (2022) -
Multivendor fully automatic uncertainty management approaches for the intuitive representation of DME fluid accumulations in OCT images
por: Vidal, Plácido, et al.
Publicado: (2023) -
Data augmentation approaches using cycle-consistent adversarial networks for improving COVID-19 screening in portable chest X-ray images
por: Morís, Daniel Iglesias, et al.
Publicado: (2021) -
Fully Automatic Registration Methods for Chest X-Ray Images
por: Lee, Yu-Ching, et al.
Publicado: (2021) -
COVIDetection: deep convolutional neural networks-based automatic detection of COVID-19 with chest x-ray images
por: Geetha, R., et al.
Publicado: (2022)