Cargando…
TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis
Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Life Science Alliance LLC
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645334/ https://www.ncbi.nlm.nih.gov/pubmed/34810279 http://dx.doi.org/10.26508/lsa.202101261 |
_version_ | 1784610282340876288 |
---|---|
author | Grelet, Simon Fréreux, Cécile Obellianne, Clémence Noguchi, Ken Howley, Breege V Dalton, Annamarie C Howe, Philip H |
author_facet | Grelet, Simon Fréreux, Cécile Obellianne, Clémence Noguchi, Ken Howley, Breege V Dalton, Annamarie C Howe, Philip H |
author_sort | Grelet, Simon |
collection | PubMed |
description | Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer. |
format | Online Article Text |
id | pubmed-8645334 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Life Science Alliance LLC |
record_format | MEDLINE/PubMed |
spelling | pubmed-86453342021-12-20 TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis Grelet, Simon Fréreux, Cécile Obellianne, Clémence Noguchi, Ken Howley, Breege V Dalton, Annamarie C Howe, Philip H Life Sci Alliance Research Articles Metastasis is the leading driver of cancer-related death. Tumor cell plasticity associated with the epithelial–mesenchymal transition (EMT), an embryonic program also observed in carcinomas, has been proposed to explain the colonization of distant organs by the primary tumor cells. Many studies have established correlations between EMT marker expression in the primary tumor and metastasis in vivo. However, the longstanding model of EMT-transitioned cells disseminating to secondary sites is still actively debated and hybrid states are presently considered as more relevant during tumor progression and metastasis. Here, we describe an unexplored role of EMT on the tumor microenvironment by controlling tumor innervation. Using in vitro and in vivo breast tumor progression models, we demonstrate that TGFβ-mediated tumor cell EMT triggers the expression of the embryonic LincRNA Platr18 those elevated expression controls the expression of the axon guidance protein semaphorin-4F and other neuron-related molecules such as IGSF11/VSIG-3. Platr18/Sema4F axis silencing abrogates axonogenesis and attenuates metastasis. Our observations suggest that EMT-transitioned cells are also locally required in the primary tumor to support distant dissemination by promoting axonogenesis, a biological process known for its role in metastatic progression of breast cancer. Life Science Alliance LLC 2021-11-22 /pmc/articles/PMC8645334/ /pubmed/34810279 http://dx.doi.org/10.26508/lsa.202101261 Text en © 2021 Grelet et al. https://creativecommons.org/licenses/by/4.0/This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Research Articles Grelet, Simon Fréreux, Cécile Obellianne, Clémence Noguchi, Ken Howley, Breege V Dalton, Annamarie C Howe, Philip H TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis |
title | TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis |
title_full | TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis |
title_fullStr | TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis |
title_full_unstemmed | TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis |
title_short | TGFβ-induced expression of long noncoding lincRNA Platr18 controls breast cancer axonogenesis |
title_sort | tgfβ-induced expression of long noncoding lincrna platr18 controls breast cancer axonogenesis |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645334/ https://www.ncbi.nlm.nih.gov/pubmed/34810279 http://dx.doi.org/10.26508/lsa.202101261 |
work_keys_str_mv | AT greletsimon tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis AT frereuxcecile tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis AT obellianneclemence tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis AT noguchiken tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis AT howleybreegev tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis AT daltonannamariec tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis AT howephiliph tgfbinducedexpressionoflongnoncodinglincrnaplatr18controlsbreastcanceraxonogenesis |