Cargando…

MEA-CNDP: A Membrane Evolutionary Algorithm for Solving Biobjective Critical Node Detection Problem

The critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a single-objective optimization problem, which re...

Descripción completa

Detalles Bibliográficos
Autores principales: Xu, Yaochang, Guo, Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645377/
https://www.ncbi.nlm.nih.gov/pubmed/34876897
http://dx.doi.org/10.1155/2021/8406864
Descripción
Sumario:The critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a single-objective optimization problem, which requires more prior knowledge to a certain extent. This paper proposes a membrane evolution algorithm MEA-CNDP to solve biobjective CNDP. MEA-CNDP includes a population initialization strategy based on the evaluation of decision variables, a strategy to transform the main objective, a strategy to update the membrane inherited pool, and four membrane evolutionary operators. The numerical experiments on 16 benchmark problems with random and logarithmic weights show that MEA-CNDP outperforms other algorithms in most cases. In particular, MEA-CNDP has unique advantages in dealing with large-scale sparse bi-CNDP.