Cargando…
MEA-CNDP: A Membrane Evolutionary Algorithm for Solving Biobjective Critical Node Detection Problem
The critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a single-objective optimization problem, which re...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645377/ https://www.ncbi.nlm.nih.gov/pubmed/34876897 http://dx.doi.org/10.1155/2021/8406864 |
Sumario: | The critical node detection problem (CNDP) refers to the identification of one or more nodes that have a significant impact on the entire complex network according to the importance of each node in a complex network. Most methods consider the CNDP as a single-objective optimization problem, which requires more prior knowledge to a certain extent. This paper proposes a membrane evolution algorithm MEA-CNDP to solve biobjective CNDP. MEA-CNDP includes a population initialization strategy based on the evaluation of decision variables, a strategy to transform the main objective, a strategy to update the membrane inherited pool, and four membrane evolutionary operators. The numerical experiments on 16 benchmark problems with random and logarithmic weights show that MEA-CNDP outperforms other algorithms in most cases. In particular, MEA-CNDP has unique advantages in dealing with large-scale sparse bi-CNDP. |
---|