Cargando…

Early-Life Exposure to Low-Dose Cadmium Accelerates Diethylnitrosamine and Diet-Induced Liver Cancer

Maternal exposure to cadmium causes obesity and metabolic changes in the offspring, including nonalcoholic fatty liver disease-like pathology. However, whether maternal cadmium exposure accelerates liver cancer in the offspring is unknown. This study investigated the impact of early-life exposure to...

Descripción completa

Detalles Bibliográficos
Autores principales: Men, Hongbo, Young, Jamie L., Zhou, Wenqian, Zhang, Haina, Wang, Xiang, Xu, Jianxiang, Lin, Qian, Tan, Yi, Zheng, Yang, Cai, Lu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645401/
https://www.ncbi.nlm.nih.gov/pubmed/34876963
http://dx.doi.org/10.1155/2021/1427787
Descripción
Sumario:Maternal exposure to cadmium causes obesity and metabolic changes in the offspring, including nonalcoholic fatty liver disease-like pathology. However, whether maternal cadmium exposure accelerates liver cancer in the offspring is unknown. This study investigated the impact of early-life exposure to cadmium on the incidence and potential mechanisms of hepatocellular carcinoma (HCC) in offspring subjected to postweaning HCC induction. HCC in C57BL/6J mice was induced by diethylnitrosamine (DEN) injection at weaning, followed by a long-term high-fat choline-deficient (HFCD) diet. Before weaning, liver cadmium levels were significantly higher in mice with early-life cadmium exposure than in those without cadmium exposure. However, by 26 and 29 weeks of age, hepatic cadmium fell to control levels, while a significant decrease was observed in copper and iron in the liver. Both male and female cadmium-exposed mice showed increased body weight compared to non-cadmium-treated mice. For females, early-life cadmium exposure also worsened insulin intolerance but did not significantly promote DEN/HFCD diet-induced liver tumors. In contrast, in male mice, early-life cadmium exposure enhanced liver cancer induction by DEN/HFCD with high incidence and larger liver tumors. The liver peritumor tissue of early-life cadmium-exposed mice exhibited greater inflammation and disruption of fatty acid metabolism, accompanied by higher malondialdehyde and lower esterified triglyceride levels compared to mice without cadmium exposure. These findings suggest that early-life exposure to low-dose cadmium accelerates liver cancer development induced by a DEN/HFCD in male mice, probably due to chronic lipotoxicity and inflammation caused by increased uptake but decreased consumption of fatty acids.