Cargando…
Model-driven engineering city spaces via bidirectional model transformations
Engineering cyber-physical systems inhabiting contemporary urban spatial environments demands software engineering facilities to support design and operation. Tools and approaches in civil engineering and architectural informatics produce artifacts that are geometrical or geographical representation...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645541/ https://www.ncbi.nlm.nih.gov/pubmed/34924920 http://dx.doi.org/10.1007/s10270-020-00851-0 |
_version_ | 1784610326650552320 |
---|---|
author | Visconti, Ennio Tsigkanos, Christos Hu, Zhenjiang Ghezzi, Carlo |
author_facet | Visconti, Ennio Tsigkanos, Christos Hu, Zhenjiang Ghezzi, Carlo |
author_sort | Visconti, Ennio |
collection | PubMed |
description | Engineering cyber-physical systems inhabiting contemporary urban spatial environments demands software engineering facilities to support design and operation. Tools and approaches in civil engineering and architectural informatics produce artifacts that are geometrical or geographical representations describing physical spaces. The models we consider conform to the CityGML standard; although relying on international standards and accessible in machine-readable formats, such physical space descriptions often lack semantic information that can be used to support analyses. In our context, analysis as commonly understood in software engineering refers to reasoning on properties of an abstracted model—in this case a city design. We support model-based development, firstly by providing a way to derive analyzable models from CityGML descriptions, and secondly, we ensure that changes performed are propagated correctly. Essentially, a digital twin of a city is kept synchronized, in both directions, with the information from the actual city. Specifically, our formal programming technique and accompanying technical framework assure that relevant information added, or changes applied to the domain (resp. analyzable) model are reflected back in the analyzable (resp. domain) model automatically and coherently. The technique developed is rooted in the theory of bidirectional transformations, which guarantees that synchronization between models is consistent and well behaved. Produced models can bootstrap graph-theoretic, spatial or dynamic analyses. We demonstrate that bidirectional transformations can be achieved in practice on real city models. |
format | Online Article Text |
id | pubmed-8645541 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Springer Berlin Heidelberg |
record_format | MEDLINE/PubMed |
spelling | pubmed-86455412021-12-17 Model-driven engineering city spaces via bidirectional model transformations Visconti, Ennio Tsigkanos, Christos Hu, Zhenjiang Ghezzi, Carlo Softw Syst Model Special Section Paper Engineering cyber-physical systems inhabiting contemporary urban spatial environments demands software engineering facilities to support design and operation. Tools and approaches in civil engineering and architectural informatics produce artifacts that are geometrical or geographical representations describing physical spaces. The models we consider conform to the CityGML standard; although relying on international standards and accessible in machine-readable formats, such physical space descriptions often lack semantic information that can be used to support analyses. In our context, analysis as commonly understood in software engineering refers to reasoning on properties of an abstracted model—in this case a city design. We support model-based development, firstly by providing a way to derive analyzable models from CityGML descriptions, and secondly, we ensure that changes performed are propagated correctly. Essentially, a digital twin of a city is kept synchronized, in both directions, with the information from the actual city. Specifically, our formal programming technique and accompanying technical framework assure that relevant information added, or changes applied to the domain (resp. analyzable) model are reflected back in the analyzable (resp. domain) model automatically and coherently. The technique developed is rooted in the theory of bidirectional transformations, which guarantees that synchronization between models is consistent and well behaved. Produced models can bootstrap graph-theoretic, spatial or dynamic analyses. We demonstrate that bidirectional transformations can be achieved in practice on real city models. Springer Berlin Heidelberg 2021-02-16 2021 /pmc/articles/PMC8645541/ /pubmed/34924920 http://dx.doi.org/10.1007/s10270-020-00851-0 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Special Section Paper Visconti, Ennio Tsigkanos, Christos Hu, Zhenjiang Ghezzi, Carlo Model-driven engineering city spaces via bidirectional model transformations |
title | Model-driven engineering city spaces via bidirectional model transformations |
title_full | Model-driven engineering city spaces via bidirectional model transformations |
title_fullStr | Model-driven engineering city spaces via bidirectional model transformations |
title_full_unstemmed | Model-driven engineering city spaces via bidirectional model transformations |
title_short | Model-driven engineering city spaces via bidirectional model transformations |
title_sort | model-driven engineering city spaces via bidirectional model transformations |
topic | Special Section Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645541/ https://www.ncbi.nlm.nih.gov/pubmed/34924920 http://dx.doi.org/10.1007/s10270-020-00851-0 |
work_keys_str_mv | AT viscontiennio modeldrivenengineeringcityspacesviabidirectionalmodeltransformations AT tsigkanoschristos modeldrivenengineeringcityspacesviabidirectionalmodeltransformations AT huzhenjiang modeldrivenengineeringcityspacesviabidirectionalmodeltransformations AT ghezzicarlo modeldrivenengineeringcityspacesviabidirectionalmodeltransformations |