Cargando…
Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch
A small granule starch from sand rice (Agriophyllum squarrosum) was subjected to heat‐moisture treatment (HMT) at different moisture contents (MCs,15%–30%). With MC≤20%, a higher MC resulted in increases in the starch orders (i.e., short‐range and crystalline structure) with unchanged granule morpho...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645719/ https://www.ncbi.nlm.nih.gov/pubmed/34925801 http://dx.doi.org/10.1002/fsn3.2622 |
_version_ | 1784610365219274752 |
---|---|
author | Wu, Chunsen Ji, Guiying Gao, Fan Qian, Jian‐Ya Zhang, Liang Li, Qian Zhang, Chen |
author_facet | Wu, Chunsen Ji, Guiying Gao, Fan Qian, Jian‐Ya Zhang, Liang Li, Qian Zhang, Chen |
author_sort | Wu, Chunsen |
collection | PubMed |
description | A small granule starch from sand rice (Agriophyllum squarrosum) was subjected to heat‐moisture treatment (HMT) at different moisture contents (MCs,15%–30%). With MC≤20%, a higher MC resulted in increases in the starch orders (i.e., short‐range and crystalline structure) with unchanged granule morphology. Nonetheless, a further elevated MC (>20%) gradually destroyed the granule morphology and starch orders. Also, HMT gradually vanished the lamellar structure as MC increased during HMT. These structural evolutions in HMT‐modified starch resulted in greater thermal stability, higher pasting temperature, lower pasting viscosity and weakened digestibility. Particularly, HMT applied directly in sand rice starch at 20% MC obtained the highest amount of SDS and RS (23.6%), which was 2.2‐fold higher than that of native starch. Therefore, the small granule sand rice starch can be modulated by HMT through controlled MC to expand their application range in food production. |
format | Online Article Text |
id | pubmed-8645719 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86457192021-12-17 Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch Wu, Chunsen Ji, Guiying Gao, Fan Qian, Jian‐Ya Zhang, Liang Li, Qian Zhang, Chen Food Sci Nutr Original Research A small granule starch from sand rice (Agriophyllum squarrosum) was subjected to heat‐moisture treatment (HMT) at different moisture contents (MCs,15%–30%). With MC≤20%, a higher MC resulted in increases in the starch orders (i.e., short‐range and crystalline structure) with unchanged granule morphology. Nonetheless, a further elevated MC (>20%) gradually destroyed the granule morphology and starch orders. Also, HMT gradually vanished the lamellar structure as MC increased during HMT. These structural evolutions in HMT‐modified starch resulted in greater thermal stability, higher pasting temperature, lower pasting viscosity and weakened digestibility. Particularly, HMT applied directly in sand rice starch at 20% MC obtained the highest amount of SDS and RS (23.6%), which was 2.2‐fold higher than that of native starch. Therefore, the small granule sand rice starch can be modulated by HMT through controlled MC to expand their application range in food production. John Wiley and Sons Inc. 2021-10-20 /pmc/articles/PMC8645719/ /pubmed/34925801 http://dx.doi.org/10.1002/fsn3.2622 Text en © 2021 The Authors. Food Science & Nutrition published by Wiley Periodicals LLC. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Original Research Wu, Chunsen Ji, Guiying Gao, Fan Qian, Jian‐Ya Zhang, Liang Li, Qian Zhang, Chen Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch |
title | Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch |
title_full | Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch |
title_fullStr | Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch |
title_full_unstemmed | Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch |
title_short | Effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (Agriophyllum squarrosum) starch |
title_sort | effect of heat‐moisture treatment on the structural and physicochemical characteristics of sand rice (agriophyllum squarrosum) starch |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645719/ https://www.ncbi.nlm.nih.gov/pubmed/34925801 http://dx.doi.org/10.1002/fsn3.2622 |
work_keys_str_mv | AT wuchunsen effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch AT jiguiying effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch AT gaofan effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch AT qianjianya effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch AT zhangliang effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch AT liqian effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch AT zhangchen effectofheatmoisturetreatmentonthestructuralandphysicochemicalcharacteristicsofsandriceagriophyllumsquarrosumstarch |