Cargando…
Emergence of Lie Symmetries in Functional Architectures Learned by CNNs
In this paper we study the spontaneous development of symmetries in the early layers of a Convolutional Neural Network (CNN) during learning on natural images. Our architecture is built in such a way to mimic some properties of the early stages of biological visual systems. In particular, it contain...
Autores principales: | Bertoni, Federico, Montobbio, Noemi, Sarti, Alessandro, Citti, Giovanna |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8645966/ https://www.ncbi.nlm.nih.gov/pubmed/34880740 http://dx.doi.org/10.3389/fncom.2021.694505 |
Ejemplares similares
-
Functional architecture of M1 cells encoding movement direction
por: Mazzetti, Caterina, et al.
Publicado: (2023) -
Interpreting the decisions of CNNs via influence functions
por: Aamir, Aisha, et al.
Publicado: (2023) -
Reconfigurable Architecture and Dataflow for Memory Traffic Minimization of CNNs Computation
por: Cheng, Wei-Kai, et al.
Publicado: (2021) -
Neural Architecture Search for 1D CNNs—Different Approaches Tests and Measurements
por: Rala Cordeiro, João, et al.
Publicado: (2021) -
Gradient adaptive sampling and multiple temporal scale 3D CNNs for tactile object recognition
por: Qian, Xiaoliang, et al.
Publicado: (2023)