Cargando…

3-O-Acetyl-11-keto-β-boswellic acid ameliorates acquired, consolidated and recognitive memory deficits through the regulation of hippocampal PPAR γ, MMP9 and MMP2 genes in dementia model

Pentacyclic Phytomolecule 3-O-Acetyl-11-keto-β-boswellic acid (AKBA) from Frankincense family has proven for the neuroprotection and recognized as an orphan drug for the treatment of cerebral edema. Nonetheless, AKBA have promising indications with Peroxisome proliferator activated receptor gamma (P...

Descripción completa

Detalles Bibliográficos
Autores principales: Gunasekaran, Venkatesh, Avarachan, Jinu, Augustine, Anitta, Khayum, Abdul, R, Arivukkarasu
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8646985/
https://www.ncbi.nlm.nih.gov/pubmed/34926858
http://dx.doi.org/10.1016/j.heliyon.2021.e08523
Descripción
Sumario:Pentacyclic Phytomolecule 3-O-Acetyl-11-keto-β-boswellic acid (AKBA) from Frankincense family has proven for the neuroprotection and recognized as an orphan drug for the treatment of cerebral edema. Nonetheless, AKBA have promising indications with Peroxisome proliferator activated receptor gamma (PPARγ) associated to cognitive function not deliberated so far. In order to substantiate the potential role of AKBA on memory function, we examine the contribution of PPARγ activation and its downstream process. Modified method of scopolamine induced dementia rats were treated with AKBA (5, 10&15 mg/kg,i.p) and Donepezil (2.5 mg/kg,i.p). Scopolamine induced short term spatial, working memory and recognition memory impairment was reversed significantly after AKBA treatment. AKBA administration diminished the Acetylcholine esterase (AchE) activity and preserved brain GABA and glutamate mediated neuronal excitability. Further, gene expression study reveals AKBA ameliorates the memory impairment via activating PPARγ and its downstream regulators, matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) genes in hippocampus. This study concludes that the treatment with AKBA can be a novel Phyto-molecule of interest for treating dementia via up-regulating hippocampus genes mediated cholinergic activation.