Cargando…
The Power of Universal Contextualized Protein Embeddings in Cross-species Protein Function Prediction
Computationally annotating proteins with a molecular function is a difficult problem that is made even harder due to the limited amount of available labeled protein training data. Unsupervised protein embeddings partly circumvent this limitation by learning a universal protein representation from ma...
Autores principales: | van den Bent, Irene, Makrodimitris, Stavros, Reinders, Marcel |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647222/ https://www.ncbi.nlm.nih.gov/pubmed/34880594 http://dx.doi.org/10.1177/11769343211062608 |
Ejemplares similares
-
A thorough analysis of the contribution of experimental, derived and sequence-based predicted protein-protein interactions for functional annotation of proteins
por: Makrodimitris, Stavros, et al.
Publicado: (2020) -
Improving protein function prediction using protein sequence and GO-term similarities
por: Makrodimitris, Stavros, et al.
Publicado: (2019) -
Unsupervised protein embeddings outperform hand-crafted sequence and structure features at predicting molecular function
por: Villegas-Morcillo, Amelia, et al.
Publicado: (2020) -
An in-depth comparison of linear and non-linear joint embedding methods for bulk and single-cell multi-omics
por: Makrodimitris, Stavros, et al.
Publicado: (2023) -
Automatic Gene Function Prediction in the 2020’s
por: Makrodimitris, Stavros, et al.
Publicado: (2020)