Cargando…
Exploration of Dark Chemical Genomics Space via Portal Learning: Applied to Targeting the Undruggable Genome and COVID-19 Anti-Infective Polypharmacology
Advances in biomedicine are largely fueled by exploring uncharted territories of human biology. Machine learning can both enable and accelerate discovery, but faces a fundamental hurdle when applied to unseen data with distributions that differ from previously observed ones—a common dilemma in scien...
Autores principales: | Cai, Tian, Xie, Li, Chen, Muge, Liu, Yang, He, Di, Zhang, Shuo, Mura, Cameron, Bourne, Philip E., Xie, Lei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Journal Experts
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647653/ https://www.ncbi.nlm.nih.gov/pubmed/34873596 http://dx.doi.org/10.21203/rs.3.rs-1109318/v1 |
Ejemplares similares
-
End-to-end sequence-structure-function meta-learning predicts genome-wide chemical-protein interactions for dark proteins
por: Cai, Tian, et al.
Publicado: (2023) -
The Mycobacterium tuberculosis Drugome and Its Polypharmacological Implications
por: Kinnings, Sarah L., et al.
Publicado: (2010) -
The Unpluggable in Pursuit of the Undruggable: Tackling the Dark Matter of the Cancer Therapeutics Universe
por: Epstein, Richard J.
Publicado: (2013) -
Drugging the undruggables: exploring the ubiquitin system for drug development
por: Huang, Xiaodong, et al.
Publicado: (2016) -
Drugging an undruggable pocket on KRAS
por: Kessler, Dirk, et al.
Publicado: (2019)