Cargando…
TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy
BACKGROUND: Doxorubicin (DOX) is an anthracycline antibiotic that inhibits the growth of several solid and hematologic malignant tumors. Increasing the targeting ability of DOX and reducing the multi-drug resistance (MDR) of tumor cells to DOX are major aims for researchers. PURPOSE: In this study,...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647655/ https://www.ncbi.nlm.nih.gov/pubmed/34880613 http://dx.doi.org/10.2147/IJN.S335405 |
_version_ | 1784610645510979584 |
---|---|
author | Tang, Lan Jiang, Wenhui Wu, Lan Yu, Xiaolan He, Zheng Shan, Weiguang Fu, Lulu Zhang, Zhenhai Zhao, Yunchun |
author_facet | Tang, Lan Jiang, Wenhui Wu, Lan Yu, Xiaolan He, Zheng Shan, Weiguang Fu, Lulu Zhang, Zhenhai Zhao, Yunchun |
author_sort | Tang, Lan |
collection | PubMed |
description | BACKGROUND: Doxorubicin (DOX) is an anthracycline antibiotic that inhibits the growth of several solid and hematologic malignant tumors. Increasing the targeting ability of DOX and reducing the multi-drug resistance (MDR) of tumor cells to DOX are major aims for researchers. PURPOSE: In this study, to increase therapeutic efficiency, reduce the side effects and the MDR of tumor cells to DOX, D-alpha-tocopheryl polyethylene glycol 2000 succinate monoester (TPGS2000)-DOX prodrug micelles were developed by grafting DOX to TPGS2000 via an amide bond that release DOX in the slightly acidic conditions in tumor tissue. MATERIALS AND METHODS: The TPGS2000-DOX micelles were constructed using polyethylene glycol 12-hydroxy stearate (Solutol HS15) as the carrier. The in vitro drug release profile and dilution stability of the nanomicelles were determined. The in vitro cytotoxicity and distribution of the nanomicelles in the tumor cells were also investigated. Moreover, we explored the therapeutic outcomes using the MCF-7/ADR tumor-bearing murine model. RESULTS: The average particle size was approximately 30 nm with a narrow distribution, which was conducive for solid tumor accumulation. The results of in vivo imaging and in vitro cellular uptake assays demonstrated that the TPGS2000-DOX micelles increased the tumor-targeting ability and cellular uptake of DOX. The anticancer potential of TPGS2000-DOX micelles was higher than that of DOX, as revealed by in vitro cytotoxic assays with MCF-7/ADR cells and in vivo antitumor assays with MCF-7 tumor-bearing nude mice. CONCLUSION: TPGS2000-DOX prodrug micelles reverse the MDR of tumor cells, achieve passive targeting by forming nanomicelles, and subsequently enhance the efficacy and reduce the toxicity of DOX. |
format | Online Article Text |
id | pubmed-8647655 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-86476552021-12-07 TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy Tang, Lan Jiang, Wenhui Wu, Lan Yu, Xiaolan He, Zheng Shan, Weiguang Fu, Lulu Zhang, Zhenhai Zhao, Yunchun Int J Nanomedicine Original Research BACKGROUND: Doxorubicin (DOX) is an anthracycline antibiotic that inhibits the growth of several solid and hematologic malignant tumors. Increasing the targeting ability of DOX and reducing the multi-drug resistance (MDR) of tumor cells to DOX are major aims for researchers. PURPOSE: In this study, to increase therapeutic efficiency, reduce the side effects and the MDR of tumor cells to DOX, D-alpha-tocopheryl polyethylene glycol 2000 succinate monoester (TPGS2000)-DOX prodrug micelles were developed by grafting DOX to TPGS2000 via an amide bond that release DOX in the slightly acidic conditions in tumor tissue. MATERIALS AND METHODS: The TPGS2000-DOX micelles were constructed using polyethylene glycol 12-hydroxy stearate (Solutol HS15) as the carrier. The in vitro drug release profile and dilution stability of the nanomicelles were determined. The in vitro cytotoxicity and distribution of the nanomicelles in the tumor cells were also investigated. Moreover, we explored the therapeutic outcomes using the MCF-7/ADR tumor-bearing murine model. RESULTS: The average particle size was approximately 30 nm with a narrow distribution, which was conducive for solid tumor accumulation. The results of in vivo imaging and in vitro cellular uptake assays demonstrated that the TPGS2000-DOX micelles increased the tumor-targeting ability and cellular uptake of DOX. The anticancer potential of TPGS2000-DOX micelles was higher than that of DOX, as revealed by in vitro cytotoxic assays with MCF-7/ADR cells and in vivo antitumor assays with MCF-7 tumor-bearing nude mice. CONCLUSION: TPGS2000-DOX prodrug micelles reverse the MDR of tumor cells, achieve passive targeting by forming nanomicelles, and subsequently enhance the efficacy and reduce the toxicity of DOX. Dove 2021-12-01 /pmc/articles/PMC8647655/ /pubmed/34880613 http://dx.doi.org/10.2147/IJN.S335405 Text en © 2021 Tang et al. https://creativecommons.org/licenses/by-nc/3.0/This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/ (https://creativecommons.org/licenses/by-nc/3.0/) ). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Tang, Lan Jiang, Wenhui Wu, Lan Yu, Xiaolan He, Zheng Shan, Weiguang Fu, Lulu Zhang, Zhenhai Zhao, Yunchun TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy |
title | TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy |
title_full | TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy |
title_fullStr | TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy |
title_full_unstemmed | TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy |
title_short | TPGS2000-DOX Prodrug Micelles for Improving Breast Cancer Therapy |
title_sort | tpgs2000-dox prodrug micelles for improving breast cancer therapy |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647655/ https://www.ncbi.nlm.nih.gov/pubmed/34880613 http://dx.doi.org/10.2147/IJN.S335405 |
work_keys_str_mv | AT tanglan tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT jiangwenhui tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT wulan tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT yuxiaolan tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT hezheng tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT shanweiguang tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT fululu tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT zhangzhenhai tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy AT zhaoyunchun tpgs2000doxprodrugmicellesforimprovingbreastcancertherapy |