Cargando…
Genome-Wide Association Studies of Soybean Yield-Related Hyperspectral Reflectance Bands Using Machine Learning-Mediated Data Integration Methods
In conjunction with big data analysis methods, plant omics technologies have provided scientists with cost-effective and promising tools for discovering genetic architectures of complex agronomic traits using large breeding populations. In recent years, there has been significant progress in plant p...
Autores principales: | Yoosefzadeh-Najafabadi, Mohsen, Torabi, Sepideh, Tulpan, Dan, Rajcan, Istvan, Eskandari, Milad |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8647880/ https://www.ncbi.nlm.nih.gov/pubmed/34880894 http://dx.doi.org/10.3389/fpls.2021.777028 |
Ejemplares similares
-
Machine-Learning-Based Genome-Wide Association Studies for Uncovering QTL Underlying Soybean Yield and Its Components
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2022) -
Application of Machine Learning Algorithms in Plant Breeding: Predicting Yield From Hyperspectral Reflectance in Soybean
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Application of SVR-Mediated GWAS for Identification of Durable Genetic Regions Associated with Soybean Seed Quality Traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2023) -
Application of machine learning and genetic optimization algorithms for modeling and optimizing soybean yield using its component traits
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2021) -
Optimizing genomic selection in soybean: An important improvement in agricultural genomics
por: Yoosefzadeh-Najafabadi, Mohsen, et al.
Publicado: (2022)