Cargando…
ET-6 Gemcitabine radiosensitization primes irradiated malignant meningioma cells for senolytic elimination by navitoclax
BACKGROUND: Malignant meningioma is an aggressive tumor that requires adjuvant radiotherapy after surgery, yet there has been no standard systemic therapy established so far. We have demonstrated that malignant meningioma cells are exquisitely sensitive to gemcitabine due to their increased expressi...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648159/ http://dx.doi.org/10.1093/noajnl/vdab159.016 |
Sumario: | BACKGROUND: Malignant meningioma is an aggressive tumor that requires adjuvant radiotherapy after surgery, yet there has been no standard systemic therapy established so far. We have demonstrated that malignant meningioma cells are exquisitely sensitive to gemcitabine due to their increased expression of hENT1 and dCK, which play critical roles in the intracellular transport and activation of gemcitabine, respectively (Takeda et al. Oncotarget 8:90996, 2017; Yamamoto et al., Neuro-Oncol 23:945, 2021). Significantly, in support of our findings, the efficacy and safety of gemcitabine have recently been documented in a small case series of patients with recurrent meningiomas, which has further led to a phase 2 clinical trial to evaluate the efficacy of gemcitabine in recurrent high-grade meningiomas (Khaddar et al., South Asian J Cancer 9:261, 2020). Besides its efficacy as a single agent, gemcitabine reportedly has a radiosensitizing effect in pancreatic cancer. However, it remains unknown whether or how gemcitabine interacts with ionizing radiation (IR) in malignant meningioma cells. METHODS: We examined radiosensitization effects of gemcitabine using malignant meningioma cell lines and xenografts (s.c. and i.c.) and explored the underlying mechanisms. RESULTS: Gemcitabine sensitized malignant meningioma cells remarkably to IR through the induction of senescence both in vitro and in vivo. Gemcitabine augmented the intracellular production of reactive oxygen species (ROS) by IR, which, together with cell growth suppression/senescence induced by this combination, was inhibited by N-acetyl-cysteine, suggesting a pivotal role for ROS in these combinatorial effects. Navitoclax, a senolytic drug, further enhanced the effects of the combination of gemcitabine and IR in vitro and in vivo by strongly inducing apoptotic cell death in senescent cells. CONCLUSION: These results suggest that gemcitabine is not only a promising radiosensitizer for malignant meningioma but also creates in combination with IR a therapeutic vulnerability of senescent meningioma cells to senolytics. (submitted for publication) |
---|