Cargando…

CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells

Glioblastoma (GBM) is composed of a variety of tumor cell populations including those with stem cell properties, known as glioma stem cells (GSCs). GSCs are innately less sensitive to radiation than the tumor bulk and are believed to drive GBM formation and recurrence following repeated irradiation....

Descripción completa

Detalles Bibliográficos
Autores principales: Osuka, Satoru, Zhu, Dan, Zhang, Zhaobin, Li, Chaoxi, Stackhouse, Christian T, Sampetrean, Oltea, Olson, Jeffrey J, Gillespie, Yancey, Saya, Hideyuki, Willey, Christopher D, Van Meir, Erwin G
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648251/
http://dx.doi.org/10.1093/noajnl/vdab159.008
_version_ 1784610767522234368
author Osuka, Satoru
Zhu, Dan
Zhang, Zhaobin
Li, Chaoxi
Stackhouse, Christian T
Sampetrean, Oltea
Olson, Jeffrey J
Gillespie, Yancey
Saya, Hideyuki
Willey, Christopher D
Van Meir, Erwin G
author_facet Osuka, Satoru
Zhu, Dan
Zhang, Zhaobin
Li, Chaoxi
Stackhouse, Christian T
Sampetrean, Oltea
Olson, Jeffrey J
Gillespie, Yancey
Saya, Hideyuki
Willey, Christopher D
Van Meir, Erwin G
author_sort Osuka, Satoru
collection PubMed
description Glioblastoma (GBM) is composed of a variety of tumor cell populations including those with stem cell properties, known as glioma stem cells (GSCs). GSCs are innately less sensitive to radiation than the tumor bulk and are believed to drive GBM formation and recurrence following repeated irradiation. However, it is unclear how GSCs adapt to avoid the toxicity of repeated irradiation used in clinical practice. We established radioresistant human and mouse GSCs by exposing them to repeated rounds of irradiation in order to uncover critical mediators of adaptive radioresistance. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by increased cell-cell adhesion, slower proliferation, an elevation of stemness properties and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs reduced their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which decreased Wnt/ β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. Restoration of wild type N-cadherin, but not mutant N-cad lacking β-catenin binding region, led to increased radioresistance in N-cadherin knockout GSCs, indicating the importance of the binding between N-cadherin and β-catenin. We also demonstrated that N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype can be reversed with picropodophyllin (PPP), a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. Moreover, the elevation of N-cad and Clusterin are related to prognosis of GBM in the TCGA dataset. In conclusion, our data indicate that IGF1R inhibitor can block the N-cadherin-mediated resistance pathway. Our research provides a deeper understanding of adaptive radioresistance after repeated irradiation, and validates the IGF1/N-cadherin/β-catenin/Clusterin signaling axis as a novel target for radio-sensitization, which has direct therapeutic applicability.
format Online
Article
Text
id pubmed-8648251
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Oxford University Press
record_format MEDLINE/PubMed
spelling pubmed-86482512021-12-07 CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells Osuka, Satoru Zhu, Dan Zhang, Zhaobin Li, Chaoxi Stackhouse, Christian T Sampetrean, Oltea Olson, Jeffrey J Gillespie, Yancey Saya, Hideyuki Willey, Christopher D Van Meir, Erwin G Neurooncol Adv Supplement Abstracts Glioblastoma (GBM) is composed of a variety of tumor cell populations including those with stem cell properties, known as glioma stem cells (GSCs). GSCs are innately less sensitive to radiation than the tumor bulk and are believed to drive GBM formation and recurrence following repeated irradiation. However, it is unclear how GSCs adapt to avoid the toxicity of repeated irradiation used in clinical practice. We established radioresistant human and mouse GSCs by exposing them to repeated rounds of irradiation in order to uncover critical mediators of adaptive radioresistance. Surviving subpopulations acquired strong radioresistance in vivo, which was accompanied by increased cell-cell adhesion, slower proliferation, an elevation of stemness properties and N-cadherin expression. Increasing N-cadherin expression rendered parental GSCs radioresistant, reduced their proliferation, and increased their stemness and intercellular adhesive properties. Conversely, radioresistant GSCs reduced their acquired phenotypes upon CRISPR/Cas9-mediated knockout of N-cadherin. Mechanistically, elevated N-cadherin expression resulted in the accumulation of β-catenin at the cell surface, which decreased Wnt/ β-catenin proliferative signaling, reduced neural differentiation, and protected against apoptosis through Clusterin secretion. Restoration of wild type N-cadherin, but not mutant N-cad lacking β-catenin binding region, led to increased radioresistance in N-cadherin knockout GSCs, indicating the importance of the binding between N-cadherin and β-catenin. We also demonstrated that N-cadherin upregulation was induced by radiation-induced IGF1 secretion, and the radiation resistance phenotype can be reversed with picropodophyllin (PPP), a clinically applicable blood-brain-barrier permeable IGF1 receptor inhibitor, supporting clinical translation. Moreover, the elevation of N-cad and Clusterin are related to prognosis of GBM in the TCGA dataset. In conclusion, our data indicate that IGF1R inhibitor can block the N-cadherin-mediated resistance pathway. Our research provides a deeper understanding of adaptive radioresistance after repeated irradiation, and validates the IGF1/N-cadherin/β-catenin/Clusterin signaling axis as a novel target for radio-sensitization, which has direct therapeutic applicability. Oxford University Press 2021-12-06 /pmc/articles/PMC8648251/ http://dx.doi.org/10.1093/noajnl/vdab159.008 Text en © The Author(s) 2021. Published by Oxford University Press, the Society for Neuro-Oncology and the European Association of Neuro-Oncology. https://creativecommons.org/licenses/by-nc/4.0/This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (https://creativecommons.org/licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Supplement Abstracts
Osuka, Satoru
Zhu, Dan
Zhang, Zhaobin
Li, Chaoxi
Stackhouse, Christian T
Sampetrean, Oltea
Olson, Jeffrey J
Gillespie, Yancey
Saya, Hideyuki
Willey, Christopher D
Van Meir, Erwin G
CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
title CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
title_full CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
title_fullStr CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
title_full_unstemmed CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
title_short CBMS-7 IGF1/N-cadherin/Clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
title_sort cbms-7 igf1/n-cadherin/clusterin signaling axis mediates adaptive radioresistance of glioma stem cells
topic Supplement Abstracts
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648251/
http://dx.doi.org/10.1093/noajnl/vdab159.008
work_keys_str_mv AT osukasatoru cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT zhudan cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT zhangzhaobin cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT lichaoxi cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT stackhousechristiant cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT sampetreanoltea cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT olsonjeffreyj cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT gillespieyancey cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT sayahideyuki cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT willeychristopherd cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells
AT vanmeirerwing cbms7igf1ncadherinclusterinsignalingaxismediatesadaptiveradioresistanceofgliomastemcells