Cargando…
Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study
The emergence of the COVID-19 pandemic has been a major social and economic challenge globally. Infections from infected surfaces have been identified as drivers of Covid-19 transmission, but many epidemiological models do not include an environmental component to account for indirect transmission....
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Authors. Published by Elsevier Ltd.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648373/ https://www.ncbi.nlm.nih.gov/pubmed/34901380 http://dx.doi.org/10.1016/j.imu.2021.100807 |
_version_ | 1784610789243486208 |
---|---|
author | Rwezaura, H. Tchoumi, S.Y. Tchuenche, J.M. |
author_facet | Rwezaura, H. Tchoumi, S.Y. Tchuenche, J.M. |
author_sort | Rwezaura, H. |
collection | PubMed |
description | The emergence of the COVID-19 pandemic has been a major social and economic challenge globally. Infections from infected surfaces have been identified as drivers of Covid-19 transmission, but many epidemiological models do not include an environmental component to account for indirect transmission. We formulate a deterministic Covid-19 model with both direct and indirect transmissions. The computed basic reproduction number [Formula: see text] represents the average number of secondary direct human-to-human infections, and the average number of secondary indirect infections from the environment. Using Partial Rank Correlation Coefficient, we compute sensitivity indices of the basic reproductive number [Formula: see text]. As expected, the most significant parameter to reduce initial disease transmission is the natural death rate of pathogens in the environment. Variation of the basic reproduction number for different values of direct and indirect transmissions are numerically investigated. Decreasing the effective direct human-to-human contact rate and indirect transmission from human-to-environment will decrease the spread of the disease as [Formula: see text] decreases and vice versa. Since the effective contact rate often accounted for as a factor of the force of infection and other interventions measures such as treatment rate are prominent features of infectious diseases, we consider several functional forms of the incidence function, and numerically investigate their potential impact on the long-term dynamics of the disease. Simulations results revealed some differences for the time and infection to reach its peak. Thus, the choice of the functional form of the force of infection should mainly be influenced by the specifics of the prevention measures being implemented. |
format | Online Article Text |
id | pubmed-8648373 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | The Authors. Published by Elsevier Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86483732021-12-07 Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study Rwezaura, H. Tchoumi, S.Y. Tchuenche, J.M. Inform Med Unlocked Article The emergence of the COVID-19 pandemic has been a major social and economic challenge globally. Infections from infected surfaces have been identified as drivers of Covid-19 transmission, but many epidemiological models do not include an environmental component to account for indirect transmission. We formulate a deterministic Covid-19 model with both direct and indirect transmissions. The computed basic reproduction number [Formula: see text] represents the average number of secondary direct human-to-human infections, and the average number of secondary indirect infections from the environment. Using Partial Rank Correlation Coefficient, we compute sensitivity indices of the basic reproductive number [Formula: see text]. As expected, the most significant parameter to reduce initial disease transmission is the natural death rate of pathogens in the environment. Variation of the basic reproduction number for different values of direct and indirect transmissions are numerically investigated. Decreasing the effective direct human-to-human contact rate and indirect transmission from human-to-environment will decrease the spread of the disease as [Formula: see text] decreases and vice versa. Since the effective contact rate often accounted for as a factor of the force of infection and other interventions measures such as treatment rate are prominent features of infectious diseases, we consider several functional forms of the incidence function, and numerically investigate their potential impact on the long-term dynamics of the disease. Simulations results revealed some differences for the time and infection to reach its peak. Thus, the choice of the functional form of the force of infection should mainly be influenced by the specifics of the prevention measures being implemented. The Authors. Published by Elsevier Ltd. 2021 2021-12-06 /pmc/articles/PMC8648373/ /pubmed/34901380 http://dx.doi.org/10.1016/j.imu.2021.100807 Text en © 2021 The Authors Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website. Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active. |
spellingShingle | Article Rwezaura, H. Tchoumi, S.Y. Tchuenche, J.M. Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study |
title | Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study |
title_full | Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study |
title_fullStr | Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study |
title_full_unstemmed | Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study |
title_short | Impact of environmental transmission and contact rates on Covid-19 dynamics: A simulation study |
title_sort | impact of environmental transmission and contact rates on covid-19 dynamics: a simulation study |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648373/ https://www.ncbi.nlm.nih.gov/pubmed/34901380 http://dx.doi.org/10.1016/j.imu.2021.100807 |
work_keys_str_mv | AT rwezaurah impactofenvironmentaltransmissionandcontactratesoncovid19dynamicsasimulationstudy AT tchoumisy impactofenvironmentaltransmissionandcontactratesoncovid19dynamicsasimulationstudy AT tchuenchejm impactofenvironmentaltransmissionandcontactratesoncovid19dynamicsasimulationstudy |