Cargando…
Integrating Clinical Data and Attentional CT Imaging Features for Esophageal Fistula Prediction in Esophageal Cancer
BACKGROUND AND PURPOSE: This study aims to develop a risk model to predict esophageal fistula in esophageal cancer (EC) patients by learning from both clinical data and computerized tomography (CT) radiomic features. MATERIALS AND METHODS: In this retrospective study, computerized tomography (CT) im...
Autores principales: | Xu, Yiyue, Cui, Hui, Dong, Taotao, Zou, Bing, Fan, Bingjie, Li, Wanlong, Wang, Shijiang, Sun, Xindong, Yu, Jinming, Wang, Linlin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648603/ https://www.ncbi.nlm.nih.gov/pubmed/34888228 http://dx.doi.org/10.3389/fonc.2021.688706 |
Ejemplares similares
-
Development and validation of a risk prediction model for radiotherapy-related esophageal fistula in esophageal cancer
por: Xu, Yiyue, et al.
Publicado: (2019) -
Multiple Immune Features-Based Signature for Predicting Recurrence and Survival of Inoperable LA-NSCLC Patients
por: Guo, Meiying, et al.
Publicado: (2020) -
Dosimetric and Radiobiological Comparison of External Beam Radiotherapy Using Simultaneous Integrated Boost Technique for Esophageal Cancer in Different Location
por: Wang, Lu, et al.
Publicado: (2019) -
Development and validation of a nomogram prognostic model for esophageal cancer patients with oligometastases
por: Li, Butuo, et al.
Publicado: (2020) -
A novel deep learning prognostic system improves survival predictions for stage III non‐small cell lung cancer
por: Yang, Linlin, et al.
Publicado: (2022)