Cargando…
BioCPPNet: automatic bioacoustic source separation with deep neural networks
We introduce the Bioacoustic Cocktail Party Problem Network (BioCPPNet), a lightweight, modular, and robust U-Net-based machine learning architecture optimized for bioacoustic source separation across diverse biological taxa. Employing learnable or handcrafted encoders, BioCPPNet operates directly o...
Autor principal: | Bermant, Peter C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648737/ https://www.ncbi.nlm.nih.gov/pubmed/34873197 http://dx.doi.org/10.1038/s41598-021-02790-2 |
Ejemplares similares
-
Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics
por: Bermant, Peter C., et al.
Publicado: (2019) -
Publisher Correction: Deep Machine Learning Techniques for the Detection and Classification of Sperm Whale Bioacoustics
por: Bermant, Peter C., et al.
Publicado: (2019) -
Towards the Automatic Classification of Avian Flight Calls for Bioacoustic Monitoring
por: Salamon, Justin, et al.
Publicado: (2016) -
BioAcoustica: a free and open repository and analysis platform for bioacoustics
por: Baker, Edward, et al.
Publicado: (2015) -
Computational bioacoustics with deep learning: a review and roadmap
por: Stowell, Dan
Publicado: (2022)