Cargando…
A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
In this paper we describe the properties of the crystal of guanylurea hydrogen phosphite (NH[Formula: see text] )[Formula: see text] CNHCO(NH[Formula: see text] )H[Formula: see text] PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648782/ https://www.ncbi.nlm.nih.gov/pubmed/34873239 http://dx.doi.org/10.1038/s41598-021-02862-3 |
_version_ | 1784610882983034880 |
---|---|
author | Sinko, Anton Solyankin, Peter Kargovsky, Aleksey Manomenova, Vera Rudneva, Elena Kozlova, Natalia Sorokina, Natalia Minakov, Fedor Kuznetsov, Sergei Nikolaev, Nazar Surovtsev, Nikolay Ozheredov, Ilya Voloshin, Alexey Shkurinov, Alexander |
author_facet | Sinko, Anton Solyankin, Peter Kargovsky, Aleksey Manomenova, Vera Rudneva, Elena Kozlova, Natalia Sorokina, Natalia Minakov, Fedor Kuznetsov, Sergei Nikolaev, Nazar Surovtsev, Nikolay Ozheredov, Ilya Voloshin, Alexey Shkurinov, Alexander |
author_sort | Sinko, Anton |
collection | PubMed |
description | In this paper we describe the properties of the crystal of guanylurea hydrogen phosphite (NH[Formula: see text] )[Formula: see text] CNHCO(NH[Formula: see text] )H[Formula: see text] PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has a wide window of transparency and a high optical threshold in the visible and NIR spectral regions and narrow absorption bands in the terahertz frequency range. The spectral characteristics of absorption and refraction in the THz range were found to be strongly dependent on crystal temperature and orientation. Computer simulations made it possible to link the nature of the resonant response of the medium at THz frequencies with the molecular structure of the crystal, in particular, with intermolecular hydrogen bonds and the layered structure of the lattice. The possibility of application of the crystal under study for the conversion of femtosecond laser radiation from visible an NIR to terahertz range was demonstrated. It was shown that dispersion properties of the crystal allow the generation of narrow band terahertz radiation, whose spectral properties are determined by conditions close to phase matching. The properties of the generated terahertz radiation under various temperatures suggest the possibility of phonon mechanism of enhancement for nonlinear susceptibility of the second order. |
format | Online Article Text |
id | pubmed-8648782 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-86487822021-12-08 A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics Sinko, Anton Solyankin, Peter Kargovsky, Aleksey Manomenova, Vera Rudneva, Elena Kozlova, Natalia Sorokina, Natalia Minakov, Fedor Kuznetsov, Sergei Nikolaev, Nazar Surovtsev, Nikolay Ozheredov, Ilya Voloshin, Alexey Shkurinov, Alexander Sci Rep Article In this paper we describe the properties of the crystal of guanylurea hydrogen phosphite (NH[Formula: see text] )[Formula: see text] CNHCO(NH[Formula: see text] )H[Formula: see text] PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has a wide window of transparency and a high optical threshold in the visible and NIR spectral regions and narrow absorption bands in the terahertz frequency range. The spectral characteristics of absorption and refraction in the THz range were found to be strongly dependent on crystal temperature and orientation. Computer simulations made it possible to link the nature of the resonant response of the medium at THz frequencies with the molecular structure of the crystal, in particular, with intermolecular hydrogen bonds and the layered structure of the lattice. The possibility of application of the crystal under study for the conversion of femtosecond laser radiation from visible an NIR to terahertz range was demonstrated. It was shown that dispersion properties of the crystal allow the generation of narrow band terahertz radiation, whose spectral properties are determined by conditions close to phase matching. The properties of the generated terahertz radiation under various temperatures suggest the possibility of phonon mechanism of enhancement for nonlinear susceptibility of the second order. Nature Publishing Group UK 2021-12-06 /pmc/articles/PMC8648782/ /pubmed/34873239 http://dx.doi.org/10.1038/s41598-021-02862-3 Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Article Sinko, Anton Solyankin, Peter Kargovsky, Aleksey Manomenova, Vera Rudneva, Elena Kozlova, Natalia Sorokina, Natalia Minakov, Fedor Kuznetsov, Sergei Nikolaev, Nazar Surovtsev, Nikolay Ozheredov, Ilya Voloshin, Alexey Shkurinov, Alexander A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics |
title | A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics |
title_full | A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics |
title_fullStr | A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics |
title_full_unstemmed | A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics |
title_short | A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics |
title_sort | monoclinic semiorganic molecular crystal guhp for terahertz photonics and optoelectronics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648782/ https://www.ncbi.nlm.nih.gov/pubmed/34873239 http://dx.doi.org/10.1038/s41598-021-02862-3 |
work_keys_str_mv | AT sinkoanton amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT solyankinpeter amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT kargovskyaleksey amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT manomenovavera amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT rudnevaelena amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT kozlovanatalia amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT sorokinanatalia amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT minakovfedor amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT kuznetsovsergei amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT nikolaevnazar amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT surovtsevnikolay amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT ozheredovilya amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT voloshinalexey amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT shkurinovalexander amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT sinkoanton monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT solyankinpeter monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT kargovskyaleksey monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT manomenovavera monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT rudnevaelena monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT kozlovanatalia monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT sorokinanatalia monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT minakovfedor monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT kuznetsovsergei monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT nikolaevnazar monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT surovtsevnikolay monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT ozheredovilya monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT voloshinalexey monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics AT shkurinovalexander monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics |