Cargando…

A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics

In this paper we describe the properties of the crystal of guanylurea hydrogen phosphite (NH[Formula: see text] )[Formula: see text] CNHCO(NH[Formula: see text] )H[Formula: see text] PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has...

Descripción completa

Detalles Bibliográficos
Autores principales: Sinko, Anton, Solyankin, Peter, Kargovsky, Aleksey, Manomenova, Vera, Rudneva, Elena, Kozlova, Natalia, Sorokina, Natalia, Minakov, Fedor, Kuznetsov, Sergei, Nikolaev, Nazar, Surovtsev, Nikolay, Ozheredov, Ilya, Voloshin, Alexey, Shkurinov, Alexander
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648782/
https://www.ncbi.nlm.nih.gov/pubmed/34873239
http://dx.doi.org/10.1038/s41598-021-02862-3
_version_ 1784610882983034880
author Sinko, Anton
Solyankin, Peter
Kargovsky, Aleksey
Manomenova, Vera
Rudneva, Elena
Kozlova, Natalia
Sorokina, Natalia
Minakov, Fedor
Kuznetsov, Sergei
Nikolaev, Nazar
Surovtsev, Nikolay
Ozheredov, Ilya
Voloshin, Alexey
Shkurinov, Alexander
author_facet Sinko, Anton
Solyankin, Peter
Kargovsky, Aleksey
Manomenova, Vera
Rudneva, Elena
Kozlova, Natalia
Sorokina, Natalia
Minakov, Fedor
Kuznetsov, Sergei
Nikolaev, Nazar
Surovtsev, Nikolay
Ozheredov, Ilya
Voloshin, Alexey
Shkurinov, Alexander
author_sort Sinko, Anton
collection PubMed
description In this paper we describe the properties of the crystal of guanylurea hydrogen phosphite (NH[Formula: see text] )[Formula: see text] CNHCO(NH[Formula: see text] )H[Formula: see text] PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has a wide window of transparency and a high optical threshold in the visible and NIR spectral regions and narrow absorption bands in the terahertz frequency range. The spectral characteristics of absorption and refraction in the THz range were found to be strongly dependent on crystal temperature and orientation. Computer simulations made it possible to link the nature of the resonant response of the medium at THz frequencies with the molecular structure of the crystal, in particular, with intermolecular hydrogen bonds and the layered structure of the lattice. The possibility of application of the crystal under study for the conversion of femtosecond laser radiation from visible an NIR to terahertz range was demonstrated. It was shown that dispersion properties of the crystal allow the generation of narrow band terahertz radiation, whose spectral properties are determined by conditions close to phase matching. The properties of the generated terahertz radiation under various temperatures suggest the possibility of phonon mechanism of enhancement for nonlinear susceptibility of the second order.
format Online
Article
Text
id pubmed-8648782
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86487822021-12-08 A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics Sinko, Anton Solyankin, Peter Kargovsky, Aleksey Manomenova, Vera Rudneva, Elena Kozlova, Natalia Sorokina, Natalia Minakov, Fedor Kuznetsov, Sergei Nikolaev, Nazar Surovtsev, Nikolay Ozheredov, Ilya Voloshin, Alexey Shkurinov, Alexander Sci Rep Article In this paper we describe the properties of the crystal of guanylurea hydrogen phosphite (NH[Formula: see text] )[Formula: see text] CNHCO(NH[Formula: see text] )H[Formula: see text] PO[Formula: see text] (GUHP) and propose its application in terahertz photonics and optoelectronics. GUHP crystal has a wide window of transparency and a high optical threshold in the visible and NIR spectral regions and narrow absorption bands in the terahertz frequency range. The spectral characteristics of absorption and refraction in the THz range were found to be strongly dependent on crystal temperature and orientation. Computer simulations made it possible to link the nature of the resonant response of the medium at THz frequencies with the molecular structure of the crystal, in particular, with intermolecular hydrogen bonds and the layered structure of the lattice. The possibility of application of the crystal under study for the conversion of femtosecond laser radiation from visible an NIR to terahertz range was demonstrated. It was shown that dispersion properties of the crystal allow the generation of narrow band terahertz radiation, whose spectral properties are determined by conditions close to phase matching. The properties of the generated terahertz radiation under various temperatures suggest the possibility of phonon mechanism of enhancement for nonlinear susceptibility of the second order. Nature Publishing Group UK 2021-12-06 /pmc/articles/PMC8648782/ /pubmed/34873239 http://dx.doi.org/10.1038/s41598-021-02862-3 Text en © The Author(s) 2021, corrected publication 2022 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Sinko, Anton
Solyankin, Peter
Kargovsky, Aleksey
Manomenova, Vera
Rudneva, Elena
Kozlova, Natalia
Sorokina, Natalia
Minakov, Fedor
Kuznetsov, Sergei
Nikolaev, Nazar
Surovtsev, Nikolay
Ozheredov, Ilya
Voloshin, Alexey
Shkurinov, Alexander
A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
title A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
title_full A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
title_fullStr A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
title_full_unstemmed A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
title_short A monoclinic semiorganic molecular crystal GUHP for terahertz photonics and optoelectronics
title_sort monoclinic semiorganic molecular crystal guhp for terahertz photonics and optoelectronics
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8648782/
https://www.ncbi.nlm.nih.gov/pubmed/34873239
http://dx.doi.org/10.1038/s41598-021-02862-3
work_keys_str_mv AT sinkoanton amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT solyankinpeter amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT kargovskyaleksey amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT manomenovavera amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT rudnevaelena amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT kozlovanatalia amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT sorokinanatalia amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT minakovfedor amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT kuznetsovsergei amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT nikolaevnazar amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT surovtsevnikolay amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT ozheredovilya amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT voloshinalexey amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT shkurinovalexander amonoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT sinkoanton monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT solyankinpeter monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT kargovskyaleksey monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT manomenovavera monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT rudnevaelena monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT kozlovanatalia monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT sorokinanatalia monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT minakovfedor monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT kuznetsovsergei monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT nikolaevnazar monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT surovtsevnikolay monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT ozheredovilya monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT voloshinalexey monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics
AT shkurinovalexander monoclinicsemiorganicmolecularcrystalguhpforterahertzphotonicsandoptoelectronics