Cargando…
Identifying diverse metal oxide nanomaterials with lethal effects on embryonic zebrafish using machine learning
Manufacturers of nanomaterial-enabled products need models of endpoints that are relevant to human safety to support the “safe by design” paradigm and avoid late-stage attrition. Increasingly, embryonic zebrafish (Danio Rerio) are recognised as a key human safety relevant in vivo test system. Hence,...
Autores principales: | Robinson, Richard Liam Marchese, Sarimveis, Haralambos, Doganis, Philip, Jia, Xiaodong, Kotzabasaki, Marianna, Gousiadou, Christiana, Harper, Stacey Lynn, Wilkins, Terry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Beilstein-Institut
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649207/ https://www.ncbi.nlm.nih.gov/pubmed/34934606 http://dx.doi.org/10.3762/bjnano.12.97 |
Ejemplares similares
-
Development of artificial neural network models to predict the PAMPA effective permeability of new, orally administered drugs active against the coronavirus SARS-CoV-2
por: Gousiadou, Chrysoula, et al.
Publicado: (2023) -
QSAR modeling of the toxicity classification of superparamagnetic iron oxide nanoparticles (SPIONs) in stem-cell monitoring applications: an integrated study from data curation to model development
por: Kotzabasaki, Marianna I., et al.
Publicado: (2020) -
Machine learning methods for multi-walled carbon nanotubes (MWCNT) genotoxicity prediction
por: Kotzabasaki, Marianna, et al.
Publicado: (2021) -
The eNanoMapper database for nanomaterial safety information
por: Jeliazkova, Nina, et al.
Publicado: (2015) -
Influence of surface chemical properties on the toxicity of engineered zinc oxide nanoparticles to embryonic zebrafish
por: Zhou, Zitao, et al.
Publicado: (2015)