Cargando…
Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury
BACKGROUND: Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex‐specific effects of stress in myocard...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649237/ https://www.ncbi.nlm.nih.gov/pubmed/34472367 http://dx.doi.org/10.1161/JAHA.120.015868 |
_version_ | 1784610950884622336 |
---|---|
author | Dhaibar, Hemangini A. Carroll, Natalie G. Amatya, Shripa Kamberov, Lilly Khanna, Pranshu Orr, A. Wayne Bailey, Steven R. Oakley, Robert H. Cidlowski, John A. Cruz‐Topete, Diana |
author_facet | Dhaibar, Hemangini A. Carroll, Natalie G. Amatya, Shripa Kamberov, Lilly Khanna, Pranshu Orr, A. Wayne Bailey, Steven R. Oakley, Robert H. Cidlowski, John A. Cruz‐Topete, Diana |
author_sort | Dhaibar, Hemangini A. |
collection | PubMed |
description | BACKGROUND: Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex‐specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. METHODS AND RESULTS: Genomewide studies show that glucocorticoids inhibit estrogen‐mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5‐HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5‐HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5‐HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase–mediated biotin–deoxyuridine triphosphate nick‐end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5‐HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. CONCLUSIONS: These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion. |
format | Online Article Text |
id | pubmed-8649237 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86492372022-01-14 Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury Dhaibar, Hemangini A. Carroll, Natalie G. Amatya, Shripa Kamberov, Lilly Khanna, Pranshu Orr, A. Wayne Bailey, Steven R. Oakley, Robert H. Cidlowski, John A. Cruz‐Topete, Diana J Am Heart Assoc Original Research BACKGROUND: Stress has emerged as an important risk factor for heart disease in women. Stress levels have been shown to correlate with delayed recovery and increased mortality after a myocardial infarction. Therefore, we sought to investigate if the observed sex‐specific effects of stress in myocardial infarction may be partly attributed to genomic interactions between the female sex hormones, estrogen (E2), and the primary stress hormones glucocorticoids. METHODS AND RESULTS: Genomewide studies show that glucocorticoids inhibit estrogen‐mediated regulation of genes with established roles in cardiomyocyte homeostasis. These include 5‐HT2BR (cardiac serotonin receptor 2B), the expression of which is critical to prevent cardiomyocyte death in the adult heart. Using siRNA, gene expression, and chromatin immunoprecipitation assays, we found that 5‐HT2BR is a primary target of the glucocorticoid receptor and the estrogen receptor α at the level of transcription. The glucocorticoid receptor blocks the recruitment of estrogen receptor α to the promoter of the 5‐HT2BR gene, which may contribute to the adverse effects of stress in the heart of premenopausal women. Using immunoblotting, TUNEL (terminal deoxynucleotidal transferase–mediated biotin–deoxyuridine triphosphate nick‐end labeling), and flow cytometry, we demonstrate that estrogen decreases cardiomyocyte death by a mechanism relying on 5‐HT2BR expression. In vitro and in vivo experiments show that glucocorticoids inhibit estrogen cardioprotection in response to hypoxia/reoxygenation injury and exacerbate the size of the infarct areas in myocardial infarction. CONCLUSIONS: These results established a novel mechanism underlying the deleterious effects of stress on female cardiac health in the setting of ischemia/reperfusion. John Wiley and Sons Inc. 2021-09-02 /pmc/articles/PMC8649237/ /pubmed/34472367 http://dx.doi.org/10.1161/JAHA.120.015868 Text en © 2021 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley. https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ (https://creativecommons.org/licenses/by-nc-nd/4.0/) License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made. |
spellingShingle | Original Research Dhaibar, Hemangini A. Carroll, Natalie G. Amatya, Shripa Kamberov, Lilly Khanna, Pranshu Orr, A. Wayne Bailey, Steven R. Oakley, Robert H. Cidlowski, John A. Cruz‐Topete, Diana Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury |
title | Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury |
title_full | Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury |
title_fullStr | Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury |
title_full_unstemmed | Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury |
title_short | Glucocorticoid Inhibition of Estrogen Regulation of the Serotonin Receptor 2B in Cardiomyocytes Exacerbates Cell Death in Hypoxia/Reoxygenation Injury |
title_sort | glucocorticoid inhibition of estrogen regulation of the serotonin receptor 2b in cardiomyocytes exacerbates cell death in hypoxia/reoxygenation injury |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649237/ https://www.ncbi.nlm.nih.gov/pubmed/34472367 http://dx.doi.org/10.1161/JAHA.120.015868 |
work_keys_str_mv | AT dhaibarhemanginia glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT carrollnatalieg glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT amatyashripa glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT kamberovlilly glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT khannapranshu glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT orrawayne glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT baileystevenr glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT oakleyroberth glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT cidlowskijohna glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury AT cruztopetediana glucocorticoidinhibitionofestrogenregulationoftheserotoninreceptor2bincardiomyocytesexacerbatescelldeathinhypoxiareoxygenationinjury |