Cargando…

Seabuckthorn Berries Extract Attenuates Pulmonary Vascular Hyperpermeability in Lipopolysaccharide-Induced Acute Lung Injury in Mice

OBJECTIVE: To investigate the effect of seabuckthorn berries extract (SBE) on pulmonary vascular hyperpermeability in the mice model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). METHODS: Sixty Kunming mice were allocated into 6 groups by a random number table, including control, L...

Descripción completa

Detalles Bibliográficos
Autores principales: Du, Lei-lei, Liu, Ying, Wan, Li, Chen, Chu, Fan, Gang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Springer Nature Singapore 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649316/
https://www.ncbi.nlm.nih.gov/pubmed/34874520
http://dx.doi.org/10.1007/s11655-021-3346-1
Descripción
Sumario:OBJECTIVE: To investigate the effect of seabuckthorn berries extract (SBE) on pulmonary vascular hyperpermeability in the mice model of acute lung injury (ALI) induced by lipopolysaccharide (LPS). METHODS: Sixty Kunming mice were allocated into 6 groups by a random number table, including control, LPS, dexamethasone (Dex, 1 mg/kg), and 120, 240 and 480 mg/kg SBE groups, 10 mice in each group. Except the control group, mice were pre-treated with Dex and SBE, respectively, for 7 days before LPS was intraperitoneally injected to induce ALI. Pulmonary vascular hyperpermeability was evaluated by histopathologic observation and transvascular leakage determination. Tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6) levels in serum were measured using enzyme-linked immunosorbent assay. The expression of nuclear factor-kappa B (NF-κB) p65 in lung cells was determined by immunofluorescence analysis. The contents of cytoplasmic inhibitor of nuclear factor-κB kinase (IKK) and nuclear p65, as well as downstream proteins of E-selectin (CD62E) and intercellular adhesion molecule-1 (ICAM-1), were determined using Western blot analysis. RESULTS: Histopathological observation confirmed SBE treatment alleviated morphological lesion induced by LPS. Compared with the LPS group, 480 mg/kg SBE significantly decreased the water content of lung, Evans blue accumulation in lung tissue, and protein concentration and neutrophils count in bronchoalveolar lavage fluid (P<0.01); moreover, 480 mg/kg SBE significantly suppressed release of TNF-α and IL-6, and down-regulated expressions of IKK, nuclear p65, ICAM-1 and CD62E (P<0.01). CONCLUSION: SBE maintained alveolar-capillary barrier integrity under endotoxin challenge in mice by suppressing the key factors in the pathogenesis of ALI. ELECTRONIC SUPPLEMENTARY MATERIAL: Supplementary material (Appendix 1) is available in the online version of this article at 10.1007/s11655-021-3346-1.