Cargando…
Effect of Electro-acupuncture on Vasomotor Symptoms in Rats with Acute Cerebral Infarction Based on Phosphatidylinositol System
OBJECTIVE: To investigate the effect of electro-acupuncture (EA) on vasomotor symptoms in rats with acute cerebral infarction, by observing the changes in the expression of factors related to the phosphatidylinositol (PI) system. METHODS: Forty-two Wistar rats were randomly divided into 3 groups by...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Singapore
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649319/ https://www.ncbi.nlm.nih.gov/pubmed/34874522 http://dx.doi.org/10.1007/s11655-021-3341-6 |
Sumario: | OBJECTIVE: To investigate the effect of electro-acupuncture (EA) on vasomotor symptoms in rats with acute cerebral infarction, by observing the changes in the expression of factors related to the phosphatidylinositol (PI) system. METHODS: Forty-two Wistar rats were randomly divided into 3 groups by a random number table: the control group (n=6), the model group (n=18) and the EA group (n=18). The EA group was given EA treatment at Shuigou (GV 26) instantly after modeling with middle cerebral artery occlusion (MCAO) method, while the model and control groups were not given any treatment. The degrees of neurological deficiency were evaluated using neurological severity scores (NSS) and the brain blood flow was evaluated by a laser scanning confocal microscope. Western blot analysis was conducted to detect the expression levels of G-protein subtype (Gq) and calmodulin (CaM). Competition for protein binding was conducted to detect the expression level of inositol triphosphate (IP3). Thin layer quantitative analysis was conducted to detect the expression level of diacylglycerol (DAG). The expression level of intracellular concentration of free calcium ion ([Ca(2+)](i)) was detected by flow cytometry. RESULTS: The NSS of the model group was significantly higher than the control group at 3 and 6 h after MCAO (P<0.01), while the EA group was significantly lower than the model group at 6 h (P<0.01). The cerebral blood flow in the model group was significantly lower than the control group at 1, 3 and 6 h after MCAO (P<0.01), while for the EA group it was remarkably higher than the model group at the same time points (P<0.01). The expressions of Gq, CaM, IP3, DAG and [Ca(2+)](i) in the model group were significantly higher than the control group (P<0.05 or P<0.01), and those in the EA group were significantly lower than the model group at the same time points (P<0.05 or P<0.01). CONCLUSION: EA treatment at GV 26 can effectively decrease the over-expression of related factors of PI system in rats with acute cerebral infarction, improve cerebral autonomy movement, and alleviate cerebral vascular spasm. |
---|