Cargando…
Developing clinical prediction models when adhering to minimum sample size recommendations: The importance of quantifying bootstrap variability in tuning parameters and predictive performance
Recent minimum sample size formula (Riley et al.) for developing clinical prediction models help ensure that development datasets are of sufficient size to minimise overfitting. While these criteria are known to avoid excessive overfitting on average, the extent of variability in overfitting at reco...
Autores principales: | Martin, Glen P, Riley, Richard D, Collins, Gary S, Sperrin, Matthew |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649413/ https://www.ncbi.nlm.nih.gov/pubmed/34623193 http://dx.doi.org/10.1177/09622802211046388 |
Ejemplares similares
-
Penalization and shrinkage methods produced unreliable clinical prediction models especially when sample size was small
por: Riley, Richard D., et al.
Publicado: (2021) -
Minimum sample size for developing a multivariable prediction model using multinomial logistic regression
por: Pate, Alexander, et al.
Publicado: (2023) -
Targeted validation: validating clinical prediction models in their intended population and setting
por: Sperrin, Matthew, et al.
Publicado: (2022) -
Minimum Divergence Estimators, Maximum Likelihood and the Generalized Bootstrap
por: Broniatowski, Michel
Publicado: (2021) -
Continual updating and monitoring of clinical prediction models: time for dynamic prediction systems?
por: Jenkins, David A., et al.
Publicado: (2021)