Cargando…
Cone Beam CT (CBCT) Based Synthetic CT Generation Using Deep Learning Methods for Dose Calculation of Nasopharyngeal Carcinoma Radiotherapy
Objective: To generate synthetic CT (sCT) images with high quality from CBCT and planning CT (pCT) for dose calculation by using deep learning methods. Methods: 169 NPC patients with a total of 20926 slices of CBCT and pCT images were included. In this study the CycleGAN, Pix2pix and U-Net models we...
Autores principales: | Xue, Xudong, Ding, Yi, Shi, Jun, Hao, Xiaoyu, Li, Xiangbin, Li, Dan, Wu, Yuan, An, Hong, Jiang, Man, Wei, Wei, Wang, Xiao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649448/ https://www.ncbi.nlm.nih.gov/pubmed/34851204 http://dx.doi.org/10.1177/15330338211062415 |
Ejemplares similares
-
(68)Ga-PSMA-PET/CT and Diffusion MRI Targeting for Cone-Beam CT-Guided Bone Biopsies of Castration-Resistant Prostate Cancer Patients
por: van Steenbergen, T. R. F., et al.
Publicado: (2019) -
Modeling and measurement of the variations of CT number distributions for mobile targets in cone‐beam computed tomographic imaging
por: Ali, Imad, et al.
Publicado: (2015) -
Technical note: No increase in effective dose from half compared to full rotation pelvis cone beam CT
por: Hauri, Pascal, et al.
Publicado: (2017) -
Rapid unpaired CBCT‐based synthetic CT for CBCT‐guided adaptive radiotherapy
por: Wynne, Jacob F., et al.
Publicado: (2023) -
Deep learning based synthetic CT from cone beam CT generation for abdominal paediatric radiotherapy
por: Szmul, Adam, et al.
Publicado: (2023)