Cargando…

All-polymer wearable thermoelectrochemical cells harvesting body heat

Wearable thermoelectrochemical cells have attracted increasing interest due to their ability to turn human body heat into electricity. Here, we have fabricated a flexible, cost-effective, and 3D porous all-polymer electrode on an electrical conductive polymer substrate via a simple 3D printing metho...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shuai, Zhou, Yuetong, Liu, Yuqing, Wallace, Gordon G., Beirne, Stephen, Chen, Jun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649731/
https://www.ncbi.nlm.nih.gov/pubmed/34927022
http://dx.doi.org/10.1016/j.isci.2021.103466
Descripción
Sumario:Wearable thermoelectrochemical cells have attracted increasing interest due to their ability to turn human body heat into electricity. Here, we have fabricated a flexible, cost-effective, and 3D porous all-polymer electrode on an electrical conductive polymer substrate via a simple 3D printing method. Owing to the high degree of electrolyte penetration into the 3D porous electrode materials for redox reactions, the all-polymer based porous 3D electrodes deliver an increased power output of more than twice that of the film electrodes under the same mass loading using either n-type or p-type gel electrolytes. To realize the practical application of our thermocell, we fabricated 18 pairs of n-p devices through a series connection of single devices. The strap shaped thermocell arrangement was able to charge up a commercial supercapacitor to 0.27 V using the body heat of the person upon which it was being worn and in turn power a typical commercial lab timer.