Cargando…
AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well?
Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performanc...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649764/ https://www.ncbi.nlm.nih.gov/pubmed/34888226 http://dx.doi.org/10.3389/fonc.2021.601425 |
_version_ | 1784611068056698880 |
---|---|
author | Pasquini, Luca Napolitano, Antonio Lucignani, Martina Tagliente, Emanuela Dellepiane, Francesco Rossi-Espagnet, Maria Camilla Ritrovato, Matteo Vidiri, Antonello Villani, Veronica Ranazzi, Giulio Stoppacciaro, Antonella Romano, Andrea Di Napoli, Alberto Bozzao, Alessandro |
author_facet | Pasquini, Luca Napolitano, Antonio Lucignani, Martina Tagliente, Emanuela Dellepiane, Francesco Rossi-Espagnet, Maria Camilla Ritrovato, Matteo Vidiri, Antonello Villani, Veronica Ranazzi, Giulio Stoppacciaro, Antonella Romano, Andrea Di Napoli, Alberto Bozzao, Alessandro |
author_sort | Pasquini, Luca |
collection | PubMed |
description | Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performance, and comparative analyses are lacking in the literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG: overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor vIII (EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional and advanced magnetic resonance imaging (MRI). Our objective was to identify the best algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of HGG were included. Three tumoral regions were manually segmented: contrast-enhancing tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the highest mean and lowest spread of accuracy. Model performance was assessed as AUC-ROC curve mean values with 95% confidence intervals (CI). Extreme Gradient Boosting (xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%), MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%). Ensemble classifiers showed the best performance across tasks. High-scoring radiomic features shed light on possible correlations between MRI and tumor histology. |
format | Online Article Text |
id | pubmed-8649764 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-86497642021-12-08 AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? Pasquini, Luca Napolitano, Antonio Lucignani, Martina Tagliente, Emanuela Dellepiane, Francesco Rossi-Espagnet, Maria Camilla Ritrovato, Matteo Vidiri, Antonello Villani, Veronica Ranazzi, Giulio Stoppacciaro, Antonella Romano, Andrea Di Napoli, Alberto Bozzao, Alessandro Front Oncol Oncology Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performance, and comparative analyses are lacking in the literature. We aimed to compare ML classifiers to predict clinically relevant tasks for HGG: overall survival (OS), isocitrate dehydrogenase (IDH) mutation, O-6-methylguanine-DNA-methyltransferase (MGMT) promoter methylation, epidermal growth factor receptor vIII (EGFR) amplification, and Ki-67 expression, based on radiomic features from conventional and advanced magnetic resonance imaging (MRI). Our objective was to identify the best algorithm for each task. One hundred fifty-six adult patients with pathologic diagnosis of HGG were included. Three tumoral regions were manually segmented: contrast-enhancing tumor, necrosis, and non-enhancing tumor. Radiomic features were extracted with a custom version of Pyradiomics and selected through Boruta algorithm. A Grid Search algorithm was applied when computing ten times K-fold cross-validation (K=10) to get the highest mean and lowest spread of accuracy. Model performance was assessed as AUC-ROC curve mean values with 95% confidence intervals (CI). Extreme Gradient Boosting (xGB) obtained highest accuracy for OS (74,5%), Adaboost (AB) for IDH mutation (87.5%), MGMT methylation (70,8%), Ki-67 expression (86%), and EGFR amplification (81%). Ensemble classifiers showed the best performance across tasks. High-scoring radiomic features shed light on possible correlations between MRI and tumor histology. Frontiers Media S.A. 2021-11-23 /pmc/articles/PMC8649764/ /pubmed/34888226 http://dx.doi.org/10.3389/fonc.2021.601425 Text en Copyright © 2021 Pasquini, Napolitano, Lucignani, Tagliente, Dellepiane, Rossi-Espagnet, Ritrovato, Vidiri, Villani, Ranazzi, Stoppacciaro, Romano, Di Napoli and Bozzao https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Oncology Pasquini, Luca Napolitano, Antonio Lucignani, Martina Tagliente, Emanuela Dellepiane, Francesco Rossi-Espagnet, Maria Camilla Ritrovato, Matteo Vidiri, Antonello Villani, Veronica Ranazzi, Giulio Stoppacciaro, Antonella Romano, Andrea Di Napoli, Alberto Bozzao, Alessandro AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? |
title | AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? |
title_full | AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? |
title_fullStr | AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? |
title_full_unstemmed | AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? |
title_short | AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well? |
title_sort | ai and high-grade glioma for diagnosis and outcome prediction: do all machine learning models perform equally well? |
topic | Oncology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649764/ https://www.ncbi.nlm.nih.gov/pubmed/34888226 http://dx.doi.org/10.3389/fonc.2021.601425 |
work_keys_str_mv | AT pasquiniluca aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT napolitanoantonio aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT lucignanimartina aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT taglienteemanuela aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT dellepianefrancesco aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT rossiespagnetmariacamilla aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT ritrovatomatteo aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT vidiriantonello aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT villaniveronica aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT ranazzigiulio aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT stoppacciaroantonella aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT romanoandrea aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT dinapolialberto aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell AT bozzaoalessandro aiandhighgradegliomafordiagnosisandoutcomepredictiondoallmachinelearningmodelsperformequallywell |