Cargando…
AI and High-Grade Glioma for Diagnosis and Outcome Prediction: Do All Machine Learning Models Perform Equally Well?
Radiomic models outperform clinical data for outcome prediction in high-grade gliomas (HGG). However, lack of parameter standardization limits clinical applications. Many machine learning (ML) radiomic models employ single classifiers rather than ensemble learning, which is known to boost performanc...
Autores principales: | Pasquini, Luca, Napolitano, Antonio, Lucignani, Martina, Tagliente, Emanuela, Dellepiane, Francesco, Rossi-Espagnet, Maria Camilla, Ritrovato, Matteo, Vidiri, Antonello, Villani, Veronica, Ranazzi, Giulio, Stoppacciaro, Antonella, Romano, Andrea, Di Napoli, Alberto, Bozzao, Alessandro |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649764/ https://www.ncbi.nlm.nih.gov/pubmed/34888226 http://dx.doi.org/10.3389/fonc.2021.601425 |
Ejemplares similares
-
Deep Learning Can Differentiate IDH-Mutant from IDH-Wild GBM
por: Pasquini, Luca, et al.
Publicado: (2021) -
In Vivo Brain GSH: MRS Methods and Clinical Applications
por: Bottino, Francesca, et al.
Publicado: (2021) -
Cerebral Venous Thrombosis: A Challenging Diagnosis; A New Nonenhanced Computed Tomography Standardized Semi-Quantitative Method
por: Romano, Andrea, et al.
Publicado: (2021) -
Single brain metastasis versus glioblastoma multiforme: a VOI-based multiparametric analysis for differential diagnosis
por: Romano, Andrea, et al.
Publicado: (2022) -
Spatial Stability of Functional Networks: A Measure to Assess the Robustness of Graph-Theoretical Metrics to Spatial Errors Related to Brain Parcellation
por: Bottino, Francesca, et al.
Publicado: (2022)