Cargando…
Evaluating Convolutional Neural Networks as a Method of EEG–EMG Fusion
Wearable robotic exoskeletons have emerged as an exciting new treatment tool for disorders affecting mobility; however, the human–machine interface, used by the patient for device control, requires further improvement before robotic assistance and rehabilitation can be widely adopted. One method, ma...
Autores principales: | Tryon, Jacob, Trejos, Ana Luisa |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649783/ https://www.ncbi.nlm.nih.gov/pubmed/34887739 http://dx.doi.org/10.3389/fnbot.2021.692183 |
Ejemplares similares
-
Self-Recalibrating Surface EMG Pattern Recognition for Neuroprosthesis Control Based on Convolutional Neural Network
por: Zhai, Xiaolong, et al.
Publicado: (2017) -
An sEMG-Based Human-Exoskeleton Interface Fusing Convolutional Neural Networks With Hand-Crafted Features
por: Yang, Xiao, et al.
Publicado: (2022) -
EEG-based detection of the locus of auditory attention with convolutional neural networks
por: Vandecappelle, Servaas, et al.
Publicado: (2021) -
ConvDip: A Convolutional Neural Network for Better EEG Source Imaging
por: Hecker, Lukas, et al.
Publicado: (2021) -
Recognition of single upper limb motor imagery tasks from EEG using multi-branch fusion convolutional neural network
por: Zhang, Rui, et al.
Publicado: (2023)