Cargando…

Algorithms for optoacoustically controlled selective retina therapy (SRT)

OBJECTIVES: Selective Retina Therapy (SRT) uses microbubble formation (MBF) to target retinal pigment epithelium (RPE) cells selectively while sparing the neural retina and the choroid. Intra- and inter-individual variations of RPE pigmentation makes frequent radiant exposure adaption necessary. Sin...

Descripción completa

Detalles Bibliográficos
Autores principales: Seifert, Eric, Tode, Jan, Pielen, Amelie, Theisen-Kunde, Dirk, Framme, Carsten, Roider, Johann, Miura, Yoko, Birngruber, Reginald, Brinkmann, Ralf
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649889/
https://www.ncbi.nlm.nih.gov/pubmed/34926158
http://dx.doi.org/10.1016/j.pacs.2021.100316
Descripción
Sumario:OBJECTIVES: Selective Retina Therapy (SRT) uses microbubble formation (MBF) to target retinal pigment epithelium (RPE) cells selectively while sparing the neural retina and the choroid. Intra- and inter-individual variations of RPE pigmentation makes frequent radiant exposure adaption necessary. Since selective RPE cell disintegration is ophthalmoscopically non-visible, MBF detection techniques are useful to control adequate radiant exposures. It was the purpose of this study to evaluate optoacoustically based MBF detection algorithms. METHODS: Fifteen patients suffering from central serous chorioretinopathy and diabetic macula edema were treated with a SRT laser using a wavelength of 527 nm, a pulse duration of 1.7 µs and a pulse energy ramp (15 pulses, 100 Hz repetition rate). An ultrasonic transducer for MBF detection was embedded in a contact lens. RPE damage was verified with fluorescence angiography. RESULTS: An algorithm to detect MBF as an indicator for RPE cell damage was evaluated. Overall, 4646 irradiations were used for algorithm optimization and testing. The tested algorithms were superior to a baseline model. A sensitivity/specificity pair of 0.96/1 was achieved. The few false algorithmic decisions were caused by unevaluable signals. CONCLUSIONS: The algorithm can be used for guidance or automatization of microbubble related treatments like SRT or selective laser trabeculoplasty (SLT).