Cargando…
MOCOnet: Robust Motion Correction of Cardiovascular Magnetic Resonance T1 Mapping Using Convolutional Neural Networks
Background: Quantitative cardiovascular magnetic resonance (CMR) T1 mapping has shown promise for advanced tissue characterisation in routine clinical practise. However, T1 mapping is prone to motion artefacts, which affects its robustness and clinical interpretation. Current methods for motion corr...
Autores principales: | Gonzales, Ricardo A., Zhang, Qiang, Papież, Bartłomiej W., Werys, Konrad, Lukaschuk, Elena, Popescu, Iulia A., Burrage, Matthew K., Shanmuganathan, Mayooran, Ferreira, Vanessa M., Piechnik, Stefan K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8649951/ https://www.ncbi.nlm.nih.gov/pubmed/34888366 http://dx.doi.org/10.3389/fcvm.2021.768245 |
Ejemplares similares
-
Deep learning with attention supervision for automated motion artefact detection in quality control of cardiac T1-mapping
por: Zhang, Qiang, et al.
Publicado: (2020) -
Toward Replacing Late Gadolinium Enhancement With Artificial Intelligence Virtual Native Enhancement for Gadolinium-Free Cardiovascular Magnetic Resonance Tissue Characterization in Hypertrophic Cardiomyopathy
por: Zhang, Qiang, et al.
Publicado: (2021) -
Cardiovascular magnetic resonance stress and rest T1-mapping using regadenoson for detection of ischemic heart disease compared to healthy controls
por: Burrage, Matthew K., et al.
Publicado: (2021) -
Cardiac stress T1-mapping response and extracellular volume stability of MOLLI-based T1-mapping methods
por: Burrage, Matthew K., et al.
Publicado: (2021) -
Quality control-driven deep ensemble for accountable automated segmentation of cardiac magnetic resonance LGE and VNE images
por: Gonzales, Ricardo A., et al.
Publicado: (2023)