Cargando…
Splitting chemical structure data sets for federated privacy-preserving machine learning
With the increase in applications of machine learning methods in drug design and related fields, the challenge of designing sound test sets becomes more and more prominent. The goal of this challenge is to have a realistic split of chemical structures (compounds) between training, validation and tes...
Autores principales: | Simm, Jaak, Humbeck, Lina, Zalewski, Adam, Sturm, Noe, Heyndrickx, Wouter, Moreau, Yves, Beck, Bernd, Schuffenhauer, Ansgar |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650276/ https://www.ncbi.nlm.nih.gov/pubmed/34876230 http://dx.doi.org/10.1186/s13321-021-00576-2 |
Ejemplares similares
-
Don’t Overweight Weights: Evaluation of Weighting Strategies for Multi-Task Bioactivity Classification Models
por: Humbeck, Lina, et al.
Publicado: (2021) -
Towards practical privacy-preserving genome-wide association study
por: Bonte, Charlotte, et al.
Publicado: (2018) -
Privacy-preserving GWAS analysis on federated genomic datasets
por: Constable, Scott D, et al.
Publicado: (2015) -
Privacy‐preserving quality control of neuroimaging datasets in federated environments
por: Saha, Debbrata K., et al.
Publicado: (2022) -
Federated learning for preserving data privacy in collaborative
healthcare research
por: Loftus, Tyler J, et al.
Publicado: (2022)