Cargando…
Weighted Cox regression for the prediction of heterogeneous patient subgroups
BACKGROUND: An important task in clinical medicine is the construction of risk prediction models for specific subgroups of patients based on high-dimensional molecular measurements such as gene expression data. Major objectives in modeling high-dimensional data are good prediction performance and fe...
Autores principales: | Madjar, Katrin, Rahnenführer, Jörg |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650299/ https://www.ncbi.nlm.nih.gov/pubmed/34876106 http://dx.doi.org/10.1186/s12911-021-01698-1 |
Ejemplares similares
-
Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2021) -
Correction to: Combining heterogeneous subgroups with graph-structured variable selection priors for Cox regression
por: Madjar, Katrin, et al.
Publicado: (2022) -
Model-based optimization of subgroup weights for survival analysis
por: Richter, Jakob, et al.
Publicado: (2019) -
Assessing outcomes of large-scale public health interventions in the absence of baseline data using a mixture of Cox and binomial regressions
por: Duchesne, Thierry, et al.
Publicado: (2014) -
Evaluation of conditional treatment effects of adjuvant treatments on patients with synovial sarcoma using Bayesian subgroup analysis
por: Seo, Sung Wook, et al.
Publicado: (2020)