Cargando…
An efficient scRNA-seq dropout imputation method using graph attention network
BACKGROUND: Single-cell sequencing technology can address the amount of single-cell library data at the same time and display the heterogeneity of different cells. However, analyzing single-cell data is a computationally challenging problem. Because there are low counts in the gene expression region...
Autores principales: | Xu, Chenyang, Cai, Lei, Gao, Jingyang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650344/ https://www.ncbi.nlm.nih.gov/pubmed/34876032 http://dx.doi.org/10.1186/s12859-021-04493-x |
Ejemplares similares
-
SCC: an accurate imputation method for scRNA-seq dropouts based on a mixture model
por: Zheng, Yan, et al.
Publicado: (2021) -
scGCL: an imputation method for scRNA-seq data based on graph contrastive learning
por: Xiong, Zehao, et al.
Publicado: (2023) -
CellVGAE: an unsupervised scRNA-seq analysis workflow with graph attention networks
por: Buterez, David, et al.
Publicado: (2021) -
Using DenseFly algorithm for cell searching on massive scRNA-seq datasets
por: Chen, Yixin, et al.
Publicado: (2020) -
scIMC: a platform for benchmarking comparison and visualization analysis of scRNA-seq data imputation methods
por: Dai, Chichi, et al.
Publicado: (2022)