Cargando…
Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review
BACKGROUND: Solitary pulmonary nodule (SPN) is a common finding in routine clinical practice when performing chest imaging tests. The vast majority of these nodules are benign, and only a small proportion are malignant. The application of predictive models of nodule malignancy in routine clinical pr...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650360/ https://www.ncbi.nlm.nih.gov/pubmed/34872592 http://dx.doi.org/10.1186/s13643-021-01856-6 |
_version_ | 1784611183976775680 |
---|---|
author | Senent-Valero, Marina Librero, Julián Pastor-Valero, María |
author_facet | Senent-Valero, Marina Librero, Julián Pastor-Valero, María |
author_sort | Senent-Valero, Marina |
collection | PubMed |
description | BACKGROUND: Solitary pulmonary nodule (SPN) is a common finding in routine clinical practice when performing chest imaging tests. The vast majority of these nodules are benign, and only a small proportion are malignant. The application of predictive models of nodule malignancy in routine clinical practice would help to achieve better diagnostic management of SPN. The present systematic review was carried out with the purpose of critically assessing studies aimed at developing predictive models of solitary pulmonary nodule (SPN) malignancy from SPN incidentally detected in routine clinical practice. METHODS: We performed a search of available scientific literature until October 2020 in Pubmed, SCOPUS and Cochrane Central databases. The inclusion criteria were observational studies carried out in low-risk population from 35 years old onwards aimed at constructing predictive models of malignancy of pulmonary solitary nodule detected incidentally in routine clinical practice. Studies had to be published in peer-reviewed journals, either in Spanish, Portuguese or English. Exclusion criteria were non-human studies, or predictive models based in high-risk populations, or models based on computational approaches. Exclusion criteria were non-human studies, or predictive models based in high-risk populations, or models based on computational approaches (such as radiomics). We used The Transparent Reporting of a multivariable Prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, to describe the type of predictive model included in each study, and The Prediction model Risk Of Bias ASsessment Tool (PROBAST) to evaluate the quality of the selected articles. RESULTS: A total of 186 references were retrieved, and after applying the exclusion/inclusion criteria, 15 articles remained for the final review. All studies analysed clinical and radiological variables. The most frequent independent predictors of SPN malignancy were, in order of frequency, age, diameter, spiculated edge, calcification and smoking history. Variables such as race, SPN growth rate, emphysema, fibrosis, apical scarring and exposure to asbestos, uranium and radon were not analysed by the majority of the studies. All studies were classified as high risk of bias due to inadequate study designs, selection bias, insufficient population follow-up and lack of external validation, compromising their applicability for clinical practice. CONCLUSIONS: The studies included have been shown to have methodological weaknesses compromising the clinical applicability of the evaluated SPN malignancy predictive models and their potential influence on clinical decision-making for the SPN diagnostic management. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020161559 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13643-021-01856-6. |
format | Online Article Text |
id | pubmed-8650360 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-86503602021-12-07 Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review Senent-Valero, Marina Librero, Julián Pastor-Valero, María Syst Rev Research BACKGROUND: Solitary pulmonary nodule (SPN) is a common finding in routine clinical practice when performing chest imaging tests. The vast majority of these nodules are benign, and only a small proportion are malignant. The application of predictive models of nodule malignancy in routine clinical practice would help to achieve better diagnostic management of SPN. The present systematic review was carried out with the purpose of critically assessing studies aimed at developing predictive models of solitary pulmonary nodule (SPN) malignancy from SPN incidentally detected in routine clinical practice. METHODS: We performed a search of available scientific literature until October 2020 in Pubmed, SCOPUS and Cochrane Central databases. The inclusion criteria were observational studies carried out in low-risk population from 35 years old onwards aimed at constructing predictive models of malignancy of pulmonary solitary nodule detected incidentally in routine clinical practice. Studies had to be published in peer-reviewed journals, either in Spanish, Portuguese or English. Exclusion criteria were non-human studies, or predictive models based in high-risk populations, or models based on computational approaches. Exclusion criteria were non-human studies, or predictive models based in high-risk populations, or models based on computational approaches (such as radiomics). We used The Transparent Reporting of a multivariable Prediction model for Individual Prognosis Or Diagnosis (TRIPOD) statement, to describe the type of predictive model included in each study, and The Prediction model Risk Of Bias ASsessment Tool (PROBAST) to evaluate the quality of the selected articles. RESULTS: A total of 186 references were retrieved, and after applying the exclusion/inclusion criteria, 15 articles remained for the final review. All studies analysed clinical and radiological variables. The most frequent independent predictors of SPN malignancy were, in order of frequency, age, diameter, spiculated edge, calcification and smoking history. Variables such as race, SPN growth rate, emphysema, fibrosis, apical scarring and exposure to asbestos, uranium and radon were not analysed by the majority of the studies. All studies were classified as high risk of bias due to inadequate study designs, selection bias, insufficient population follow-up and lack of external validation, compromising their applicability for clinical practice. CONCLUSIONS: The studies included have been shown to have methodological weaknesses compromising the clinical applicability of the evaluated SPN malignancy predictive models and their potential influence on clinical decision-making for the SPN diagnostic management. SYSTEMATIC REVIEW REGISTRATION: PROSPERO CRD42020161559 SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s13643-021-01856-6. BioMed Central 2021-12-06 /pmc/articles/PMC8650360/ /pubmed/34872592 http://dx.doi.org/10.1186/s13643-021-01856-6 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Senent-Valero, Marina Librero, Julián Pastor-Valero, María Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
title | Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
title_full | Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
title_fullStr | Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
title_full_unstemmed | Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
title_short | Solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
title_sort | solitary pulmonary nodule malignancy predictive models applicable to routine clinical practice: a systematic review |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650360/ https://www.ncbi.nlm.nih.gov/pubmed/34872592 http://dx.doi.org/10.1186/s13643-021-01856-6 |
work_keys_str_mv | AT senentvaleromarina solitarypulmonarynodulemalignancypredictivemodelsapplicabletoroutineclinicalpracticeasystematicreview AT librerojulian solitarypulmonarynodulemalignancypredictivemodelsapplicabletoroutineclinicalpracticeasystematicreview AT pastorvaleromaria solitarypulmonarynodulemalignancypredictivemodelsapplicabletoroutineclinicalpracticeasystematicreview |