Cargando…
Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance
BACKGROUND: In insect species like Drosophila melanogaster, evolution of increased resistance or evolution of particular traits under specific environmental conditions can lead to energy trade-offs with other crucial life-history traits. Adaptation to cold stress can, in principle, involve modificat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650462/ https://www.ncbi.nlm.nih.gov/pubmed/34872492 http://dx.doi.org/10.1186/s12862-021-01934-2 |
_version_ | 1784611201071710208 |
---|---|
author | Singh, Karan Kochar, Ekta Gahlot, Prakhar Bhatt, Karan Prasad, Nagaraj Guru |
author_facet | Singh, Karan Kochar, Ekta Gahlot, Prakhar Bhatt, Karan Prasad, Nagaraj Guru |
author_sort | Singh, Karan |
collection | PubMed |
description | BACKGROUND: In insect species like Drosophila melanogaster, evolution of increased resistance or evolution of particular traits under specific environmental conditions can lead to energy trade-offs with other crucial life-history traits. Adaptation to cold stress can, in principle, involve modification of reproductive traits and physiological responses. Reproductive traits carry a substantial cost; and therefore, the evolution of reproductive traits in response to cold stress could potentially lead to trade-offs with other life-history traits. We have successfully selected replicate populations of Drosophila melanogaster for increased resistance to cold shock for over 33 generations. In these populations, the ability to recover from cold shock, mate, and lay fertile eggs 24 h post cold shock is under selection. These populations have evolved a suite of reproductive traits including increased egg viability, male mating ability, and siring ability post cold shock. These populations also show elevated mating rate both with and without cold shock. In the present study, we quantified a suite of life-history related traits in these populations to assess if evolution of cold shock resistance in these populations comes at a cost of other life-history traits. RESULTS: To assess life-history cost, we measured egg viability, mating frequency, longevity, lifetime fecundity, adult mortality, larva to adult development time, larvae to adults survival, and body weight in the cold shock selected populations and their controls under two treatments (a) post cold chock and (b) without cold shock. Twenty-four hours post cold shock, the selected population had significantly higher egg viability and mating frequency compared to control populations indicating that they have higher cold shock resistance. Selected populations had significantly longer pre-adult development time compared to their control populations. Females from the selected populations had higher body weight compared to their control populations. However, we did not find any significant difference between the selected and control populations in longevity, lifetime fecundity, adult mortality, larvae to adults survival, and male body weight under the cold chock or no cold shock treatments. CONCLUSIONS: These findings suggest that cold shock selected populations have evolved higher mating frequency and egg viability. However, there is no apparent life-history associated cost with the evolution of egg viability and reproductive performances under the cold stress condition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12862-021-01934-2. |
format | Online Article Text |
id | pubmed-8650462 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-86504622021-12-08 Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance Singh, Karan Kochar, Ekta Gahlot, Prakhar Bhatt, Karan Prasad, Nagaraj Guru BMC Ecol Evol Research BACKGROUND: In insect species like Drosophila melanogaster, evolution of increased resistance or evolution of particular traits under specific environmental conditions can lead to energy trade-offs with other crucial life-history traits. Adaptation to cold stress can, in principle, involve modification of reproductive traits and physiological responses. Reproductive traits carry a substantial cost; and therefore, the evolution of reproductive traits in response to cold stress could potentially lead to trade-offs with other life-history traits. We have successfully selected replicate populations of Drosophila melanogaster for increased resistance to cold shock for over 33 generations. In these populations, the ability to recover from cold shock, mate, and lay fertile eggs 24 h post cold shock is under selection. These populations have evolved a suite of reproductive traits including increased egg viability, male mating ability, and siring ability post cold shock. These populations also show elevated mating rate both with and without cold shock. In the present study, we quantified a suite of life-history related traits in these populations to assess if evolution of cold shock resistance in these populations comes at a cost of other life-history traits. RESULTS: To assess life-history cost, we measured egg viability, mating frequency, longevity, lifetime fecundity, adult mortality, larva to adult development time, larvae to adults survival, and body weight in the cold shock selected populations and their controls under two treatments (a) post cold chock and (b) without cold shock. Twenty-four hours post cold shock, the selected population had significantly higher egg viability and mating frequency compared to control populations indicating that they have higher cold shock resistance. Selected populations had significantly longer pre-adult development time compared to their control populations. Females from the selected populations had higher body weight compared to their control populations. However, we did not find any significant difference between the selected and control populations in longevity, lifetime fecundity, adult mortality, larvae to adults survival, and male body weight under the cold chock or no cold shock treatments. CONCLUSIONS: These findings suggest that cold shock selected populations have evolved higher mating frequency and egg viability. However, there is no apparent life-history associated cost with the evolution of egg viability and reproductive performances under the cold stress condition. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12862-021-01934-2. BioMed Central 2021-12-06 /pmc/articles/PMC8650462/ /pubmed/34872492 http://dx.doi.org/10.1186/s12862-021-01934-2 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open AccessThis article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) . The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/ (https://creativecommons.org/publicdomain/zero/1.0/) ) applies to the data made available in this article, unless otherwise stated in a credit line to the data. |
spellingShingle | Research Singh, Karan Kochar, Ekta Gahlot, Prakhar Bhatt, Karan Prasad, Nagaraj Guru Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance |
title | Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance |
title_full | Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance |
title_fullStr | Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance |
title_full_unstemmed | Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance |
title_short | Evolution of reproductive traits have no apparent life-history associated cost in populations of Drosophila melanogaster selected for cold shock resistance |
title_sort | evolution of reproductive traits have no apparent life-history associated cost in populations of drosophila melanogaster selected for cold shock resistance |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650462/ https://www.ncbi.nlm.nih.gov/pubmed/34872492 http://dx.doi.org/10.1186/s12862-021-01934-2 |
work_keys_str_mv | AT singhkaran evolutionofreproductivetraitshavenoapparentlifehistoryassociatedcostinpopulationsofdrosophilamelanogasterselectedforcoldshockresistance AT kocharekta evolutionofreproductivetraitshavenoapparentlifehistoryassociatedcostinpopulationsofdrosophilamelanogasterselectedforcoldshockresistance AT gahlotprakhar evolutionofreproductivetraitshavenoapparentlifehistoryassociatedcostinpopulationsofdrosophilamelanogasterselectedforcoldshockresistance AT bhattkaran evolutionofreproductivetraitshavenoapparentlifehistoryassociatedcostinpopulationsofdrosophilamelanogasterselectedforcoldshockresistance AT prasadnagarajguru evolutionofreproductivetraitshavenoapparentlifehistoryassociatedcostinpopulationsofdrosophilamelanogasterselectedforcoldshockresistance |