Cargando…
Effectiveness and safety of pegylated liposomal doxorubicin versus epirubicin as neoadjuvant or adjuvant chemotherapy for breast cancer: a real-world study
BACKGROUND: Pegylated liposomal doxorubicin (PLD) is an improved formulation of doxorubicin with comparable effectiveness but significantly lower cardiotoxicity than conventional anthracycline. This study aimed to evaluate the real-world effectiveness and safety of PLD versus epirubicin as neoadjuva...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8650529/ https://www.ncbi.nlm.nih.gov/pubmed/34872507 http://dx.doi.org/10.1186/s12885-021-09050-6 |
Sumario: | BACKGROUND: Pegylated liposomal doxorubicin (PLD) is an improved formulation of doxorubicin with comparable effectiveness but significantly lower cardiotoxicity than conventional anthracycline. This study aimed to evaluate the real-world effectiveness and safety of PLD versus epirubicin as neoadjuvant or adjuvant treatment for breast cancer. METHODS: Clinical data of invasive breast cancer patients who received neoadjuvant or adjuvant chemotherapy with PLD or epirubicin were retrospectively collected. Propensity score matching (PSM) was performed to reduce the risk of selection bias. The molecular typing of these patients included Luminal A, Luminal B, HER2-positive, and basal-like/triple-negative. The primary outcome was pathological complete response (pCR) rate for neoadjuvant chemotherapy and 3-year disease-free survival (DFS) rate for adjuvant chemotherapy. Noninferiority was suggested if the lower limit of the 95% CI for the 3-year DFS rate difference was greater than − 10%. The secondary outcome was adverse reactions. RESULTS: A total of 1213 patients were included (neoadjuvant, n = 274; adjuvant, n = 939). pCR (ypT0/Tis ypN0) rates of patients who received neoadjuvant chemotherapy were 11.6% for the PLD group and 7.0% for the epirubicin group, but the difference was not statistically significant (P = 0.4578). The 3-year DFS rate of patients who received adjuvant chemotherapy was 94.9% [95%CI, 91.1–98.6%] for the PLD group and 95.4% [95%CI, 93.0–97.9%] for the epirubicin group (P = 0.5684). Rate difference between the two groups and its 95% CI was - 0.55 [− 5.02, 3.92]. The lower limit of the 95% CI was − 5.0% > − 10.0%, suggesting that PLD is not be inferior to epirubicin in adjuvant chemotherapy for breast cancer. The incidences of myelosuppression, decreased appetite, alopecia, gastrointestinal reactions, and cardiotoxicity were lower in the PLD group than in the epirubicin group, while the incidence of nausea was higher in the PLD group. CONCLUSIONS: In the neoadjuvant and adjuvant treatment of breast cancer, effectiveness is similar but toxicities are different between the PLD-containing regimen and epirubicin-containing regimen. Therefore, further study is warranted to explore PLD-based neoadjuvant and adjuvant chemotherapy for breast cancer. |
---|