Cargando…
Prediction of the Least Principal Stresses Using Drilling Data: A Machine Learning Application
The least principal stresses of downhole formations include minimum horizontal stress (σ(min)) and maximum horizontal stress (σ(max)). σ(min) and σ(max) are substantial parameters that significantly affect the design and optimization of the drilling process. These stresses can be estimated using the...
Autores principales: | Gowida, Ahmed, Ibrahim, Ahmed Farid, Elkatatny, Salaheldin, Ali, Abdulwahab |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651360/ https://www.ncbi.nlm.nih.gov/pubmed/34887917 http://dx.doi.org/10.1155/2021/8865827 |
Ejemplares similares
-
New Empirical Correlations to Estimate the Least Principal
Stresses Using Conventional Logging Data
por: Gowida, Ahmed, et al.
Publicado: (2022) -
Machine learning application to predict in-situ stresses from logging data
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2021) -
Applications of
Different Classification Machine Learning
Techniques to Predict Formation Tops and Lithology While Drilling
por: Ibrahim, Ahmed Farid, et al.
Publicado: (2023) -
Application of
Silicomanganese Fume as a Novel Bridging
Material for Water-Based Drilling Fluids
por: Razzaq, Waseem, et al.
Publicado: (2022) -
A hybrid data-driven solution to facilitate safe mud window prediction
por: Gowida, Ahmed, et al.
Publicado: (2022)