Cargando…

Analyzing the Check-In Behavior of Visitors through Machine Learning Model by Mining Social Network's Big Data

The current article paper is aimed at assessing and comparing the seasonal check-in behavior of individuals in Shanghai, China, using location-based social network (LBSN) data and a variety of spatiotemporal analytic techniques. The article demonstrates the uses of location-based social network'...

Descripción completa

Detalles Bibliográficos
Autores principales: Hou, Li, Liu, Qi, Nebhen, Jamel, Uddin, Mueen, Ullah, Mujahid, Khan, Naimat Ullah
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651366/
https://www.ncbi.nlm.nih.gov/pubmed/34887940
http://dx.doi.org/10.1155/2021/6323357
Descripción
Sumario:The current article paper is aimed at assessing and comparing the seasonal check-in behavior of individuals in Shanghai, China, using location-based social network (LBSN) data and a variety of spatiotemporal analytic techniques. The article demonstrates the uses of location-based social network's data by analyzing the trends in check-ins throughout a three-year term for health purpose. We obtained the geolocation data from Sina Weibo, one of the biggest renowned Chinese microblogs (Weibo). The composed data is converted to geographic information system (GIS) type and assessed using temporal statistical analysis and spatial statistical analysis using kernel density estimation (KDE) assessment. We have applied various algorithms and trained machine learning models and finally satisfied with sequential model results because the accuracy we got was leading amongst others. The location cataloguing is accomplished via the use of facts about the characteristics of physical places. The findings demonstrate that visitors' spatial operations are more intense than residents' spatial operations, notably in downtown. However, locals also visited outlying regions, and tourists' temporal behaviors vary significantly while citizens' movements exhibit a more steady stable behavior. These findings may be used in destination management, metro planning, and the creation of digital cities.