Cargando…
Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells
Salidroside is the important active ingredient of Rhodiola species, which shows a wide range of pharmacological activities such as antioxidative stress, anti-inflammation, and antiliver fibrosis. In this paper, we aimed to study the protective effect and mechanism of salidroside against H(2)O(2)-ind...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651377/ https://www.ncbi.nlm.nih.gov/pubmed/34887995 http://dx.doi.org/10.1155/2021/1060271 |
_version_ | 1784611383123378176 |
---|---|
author | Gao, Hui Liu, Xueping Tian, Kunming Meng, Yichong Yu, Cuicui Peng, Yingfu |
author_facet | Gao, Hui Liu, Xueping Tian, Kunming Meng, Yichong Yu, Cuicui Peng, Yingfu |
author_sort | Gao, Hui |
collection | PubMed |
description | Salidroside is the important active ingredient of Rhodiola species, which shows a wide range of pharmacological activities such as antioxidative stress, anti-inflammation, and antiliver fibrosis. In this paper, we aimed to study the protective effect and mechanism of salidroside against H(2)O(2)-induced oxidative damage in H9C2 cells by determining cell proliferation rate, intracellular reactive oxygen species (ROS) level, antioxidant enzyme activities, and the expression of apoptosis-related proteins. The results showed that salidroside significantly alleviated cell growth inhibition induced by H(2)O(2) treatment in H9C2 cells, decreased the levels of intracellular ROS and malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and catalase (CAT); meanwhile, salidroside upregulated the expression of Bcl-2 while downregulated the expression of Bax, p53, and caspase-3 in H(2)O(2)-treated H9C2 cells. Furthermore, the antiapoptotic effect of salidroside was almost eliminated by the knockdown of Bcl-2. In the further exploration, the Bcl-2 expression was decreased by the p53 overexpression and increased by p53 knockdown in H(2)O(2)-treated H9C2 cells. Consequently, salidroside could protect H9C2 cells against H(2)O(2)-induced oxidative damage, and the underlying mechanism may be related to scavenging intracellular ROS, increasing the activities of intracellular antioxidant enzymes and inhibiting the expression of apoptosis-related proteins. |
format | Online Article Text |
id | pubmed-8651377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Hindawi |
record_format | MEDLINE/PubMed |
spelling | pubmed-86513772021-12-08 Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells Gao, Hui Liu, Xueping Tian, Kunming Meng, Yichong Yu, Cuicui Peng, Yingfu Oxid Med Cell Longev Research Article Salidroside is the important active ingredient of Rhodiola species, which shows a wide range of pharmacological activities such as antioxidative stress, anti-inflammation, and antiliver fibrosis. In this paper, we aimed to study the protective effect and mechanism of salidroside against H(2)O(2)-induced oxidative damage in H9C2 cells by determining cell proliferation rate, intracellular reactive oxygen species (ROS) level, antioxidant enzyme activities, and the expression of apoptosis-related proteins. The results showed that salidroside significantly alleviated cell growth inhibition induced by H(2)O(2) treatment in H9C2 cells, decreased the levels of intracellular ROS and malondialdehyde (MDA), and increased the activity of superoxide dismutase (SOD) and catalase (CAT); meanwhile, salidroside upregulated the expression of Bcl-2 while downregulated the expression of Bax, p53, and caspase-3 in H(2)O(2)-treated H9C2 cells. Furthermore, the antiapoptotic effect of salidroside was almost eliminated by the knockdown of Bcl-2. In the further exploration, the Bcl-2 expression was decreased by the p53 overexpression and increased by p53 knockdown in H(2)O(2)-treated H9C2 cells. Consequently, salidroside could protect H9C2 cells against H(2)O(2)-induced oxidative damage, and the underlying mechanism may be related to scavenging intracellular ROS, increasing the activities of intracellular antioxidant enzymes and inhibiting the expression of apoptosis-related proteins. Hindawi 2021-11-30 /pmc/articles/PMC8651377/ /pubmed/34887995 http://dx.doi.org/10.1155/2021/1060271 Text en Copyright © 2021 Hui Gao et al. https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Gao, Hui Liu, Xueping Tian, Kunming Meng, Yichong Yu, Cuicui Peng, Yingfu Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells |
title | Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells |
title_full | Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells |
title_fullStr | Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells |
title_full_unstemmed | Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells |
title_short | Insight into the Protective Effect of Salidroside against H(2)O(2)-Induced Injury in H9C2 Cells |
title_sort | insight into the protective effect of salidroside against h(2)o(2)-induced injury in h9c2 cells |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651377/ https://www.ncbi.nlm.nih.gov/pubmed/34887995 http://dx.doi.org/10.1155/2021/1060271 |
work_keys_str_mv | AT gaohui insightintotheprotectiveeffectofsalidrosideagainsth2o2inducedinjuryinh9c2cells AT liuxueping insightintotheprotectiveeffectofsalidrosideagainsth2o2inducedinjuryinh9c2cells AT tiankunming insightintotheprotectiveeffectofsalidrosideagainsth2o2inducedinjuryinh9c2cells AT mengyichong insightintotheprotectiveeffectofsalidrosideagainsth2o2inducedinjuryinh9c2cells AT yucuicui insightintotheprotectiveeffectofsalidrosideagainsth2o2inducedinjuryinh9c2cells AT pengyingfu insightintotheprotectiveeffectofsalidrosideagainsth2o2inducedinjuryinh9c2cells |