Cargando…
Vector Auto-Regressive Deep Neural Network: A Data-Driven Deep Learning-Based Directed Functional Connectivity Estimation Toolbox
An important goal in neuroscience is to elucidate the causal relationships between the brain’s different regions. This can help reveal the brain’s functional circuitry and diagnose lesions. Currently there are a lack of approaches to functional connectome estimation that leverage the state-of-the-ar...
Autores principales: | Okuno, Takuto, Woodward, Alexander |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651499/ https://www.ncbi.nlm.nih.gov/pubmed/34899167 http://dx.doi.org/10.3389/fnins.2021.764796 |
Ejemplares similares
-
Hierarchical vector auto-regressive models and their applications to multi-subject effective connectivity
por: Gorrostieta, Cristina, et al.
Publicado: (2013) -
DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains
por: Chen, Xiayu, et al.
Publicado: (2020) -
THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks
por: Muttenthaler, Lukas, et al.
Publicado: (2021) -
DeepBehavior: A Deep Learning Toolbox for Automated Analysis of Animal and Human Behavior Imaging Data
por: Arac, Ahmet, et al.
Publicado: (2019) -
Estimation of effective connectivity via data-driven neural modeling
por: Freestone, Dean R., et al.
Publicado: (2014)