Cargando…
Dynamic order Markov model for categorical sequence clustering
Markov models are extensively used for categorical sequence clustering and classification due to their inherent ability to capture complex chronological dependencies hidden in sequential data. Existing Markov models are based on an implicit assumption that the probability of the next state depends o...
Autores principales: | Chen, Rongbo, Sun, Haojun, Chen, Lifei, Zhang, Jianfei, Wang, Shengrui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651609/ https://www.ncbi.nlm.nih.gov/pubmed/34900517 http://dx.doi.org/10.1186/s40537-021-00547-2 |
Ejemplares similares
-
Clustering metagenomic sequences with interpolated Markov models
por: Kelley, David R, et al.
Publicado: (2010) -
A heteroscedastic hidden Markov mixture model for responses and categorized response times
por: Molenaar, Dylan, et al.
Publicado: (2019) -
Multiple imputation of longitudinal categorical data through bayesian mixture latent Markov models
por: Vidotto, Davide, et al.
Publicado: (2019) -
Updating Categorical Soil Maps Using Limited Survey Data by Bayesian Markov Chain Cosimulation
por: Li, Weidong, et al.
Publicado: (2013) -
Predicting indoor particle dispersion under dynamic ventilation modes with high-order Markov chain model
por: Mei, Xiong, et al.
Publicado: (2021)