Cargando…
Surface-enhanced mid-infrared absorption spectroscopy using miniaturized-disc metasurface
Surface-enhanced infrared spectroscopy is an important technique for improving the signal-to-noise ratio of spectroscopic material identification measurements in the mid-infrared fingerprinting region. However, the lower bound of the fingerprinting region receives much less attention due to a scarci...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651662/ https://www.ncbi.nlm.nih.gov/pubmed/34876645 http://dx.doi.org/10.1038/s41598-021-02984-8 |
Sumario: | Surface-enhanced infrared spectroscopy is an important technique for improving the signal-to-noise ratio of spectroscopic material identification measurements in the mid-infrared fingerprinting region. However, the lower bound of the fingerprinting region receives much less attention due to a scarcity of transparent materials, more expensive sources, and weaker plasmonic effects. In this paper, we present a miniaturized metasurface unit cell for surface-enhanced infrared spectroscopy of the 15-[Formula: see text] m vibrational band of CO[Formula: see text] . The unit cell consists of a gold disc, patterned along the edge with fine gaps/wires to create a resonant metamaterial liner. In simulation, our plasmonic metamaterial-lined disc achieves greater than [Formula: see text] the average field intensity enhancement of a comparable dipole array and a miniaturized size of [Formula: see text] using complex, 100-nm features that are patterned using 100-kV electron-beam lithography. In a simple experiment, the metamaterial-lined disc metasurface shows a high tolerance to fabrication imperfections and enhances the absorption of CO[Formula: see text] at 15 [Formula: see text] m. The resonant wavelength and reflection magnitude can be tuned over a wide range by adjusting the liner feature sizes and the metasurface array pitch to target other vibrational bands. This work is a step toward low-cost, more compact on-chip integrated gas sensors. |
---|