Cargando…

Adiabatic versus non-adiabatic electron transfer at 2D electrode materials

2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interaction...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Dan-Qing, Kang, Minkyung, Perry, David, Chen, Chang-Hui, West, Geoff, Xia, Xue, Chaudhuri, Shayantan, Laker, Zachary P. L., Wilson, Neil R., Meloni, Gabriel N., Melander, Marko M., Maurer, Reinhard J., Unwin, Patrick R.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2021
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651748/
https://www.ncbi.nlm.nih.gov/pubmed/34876571
http://dx.doi.org/10.1038/s41467-021-27339-9
_version_ 1784611466032185344
author Liu, Dan-Qing
Kang, Minkyung
Perry, David
Chen, Chang-Hui
West, Geoff
Xia, Xue
Chaudhuri, Shayantan
Laker, Zachary P. L.
Wilson, Neil R.
Meloni, Gabriel N.
Melander, Marko M.
Maurer, Reinhard J.
Unwin, Patrick R.
author_facet Liu, Dan-Qing
Kang, Minkyung
Perry, David
Chen, Chang-Hui
West, Geoff
Xia, Xue
Chaudhuri, Shayantan
Laker, Zachary P. L.
Wilson, Neil R.
Meloni, Gabriel N.
Melander, Marko M.
Maurer, Reinhard J.
Unwin, Patrick R.
author_sort Liu, Dan-Qing
collection PubMed
description 2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface.
format Online
Article
Text
id pubmed-8651748
institution National Center for Biotechnology Information
language English
publishDate 2021
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-86517482021-12-27 Adiabatic versus non-adiabatic electron transfer at 2D electrode materials Liu, Dan-Qing Kang, Minkyung Perry, David Chen, Chang-Hui West, Geoff Xia, Xue Chaudhuri, Shayantan Laker, Zachary P. L. Wilson, Neil R. Meloni, Gabriel N. Melander, Marko M. Maurer, Reinhard J. Unwin, Patrick R. Nat Commun Article 2D electrode materials are often deployed on conductive supports for electrochemistry and there is a great need to understand fundamental electrochemical processes in this electrode configuration. Here, an integrated experimental-theoretical approach is used to resolve the key electronic interactions in outer-sphere electron transfer (OS-ET), a cornerstone elementary electrochemical reaction, at graphene as-grown on a copper electrode. Using scanning electrochemical cell microscopy, and co-located structural microscopy, the classical hexaamineruthenium (III/II) couple shows the ET kinetics trend: monolayer > bilayer > multilayer graphene. This trend is rationalized quantitatively through the development of rate theory, using the Schmickler-Newns-Anderson model Hamiltonian for ET, with the explicit incorporation of electrostatic interactions in the double layer, and parameterized using constant potential density functional theory calculations. The ET mechanism is predominantly adiabatic; the addition of subsequent graphene layers increases the contact potential, producing an increase in the effective barrier to ET at the electrode/electrolyte interface. Nature Publishing Group UK 2021-12-07 /pmc/articles/PMC8651748/ /pubmed/34876571 http://dx.doi.org/10.1038/s41467-021-27339-9 Text en © The Author(s) 2021 https://creativecommons.org/licenses/by/4.0/Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) .
spellingShingle Article
Liu, Dan-Qing
Kang, Minkyung
Perry, David
Chen, Chang-Hui
West, Geoff
Xia, Xue
Chaudhuri, Shayantan
Laker, Zachary P. L.
Wilson, Neil R.
Meloni, Gabriel N.
Melander, Marko M.
Maurer, Reinhard J.
Unwin, Patrick R.
Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
title Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
title_full Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
title_fullStr Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
title_full_unstemmed Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
title_short Adiabatic versus non-adiabatic electron transfer at 2D electrode materials
title_sort adiabatic versus non-adiabatic electron transfer at 2d electrode materials
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8651748/
https://www.ncbi.nlm.nih.gov/pubmed/34876571
http://dx.doi.org/10.1038/s41467-021-27339-9
work_keys_str_mv AT liudanqing adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT kangminkyung adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT perrydavid adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT chenchanghui adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT westgeoff adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT xiaxue adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT chaudhurishayantan adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT lakerzacharypl adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT wilsonneilr adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT melonigabrieln adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT melandermarkom adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT maurerreinhardj adiabaticversusnonadiabaticelectrontransferat2delectrodematerials
AT unwinpatrickr adiabaticversusnonadiabaticelectrontransferat2delectrodematerials